Student's Copy

VI/BCA/602 (iii) (OC)

2018

(6th Semester)

BACHELOR OF COMPUTER APPLICATIONS

Paper No. : BCA-602 (iii) (OC)

(Operation Research)

(Old Course)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 15)

- **1.** Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10=10$
 - (a) Who coined the term 'operations research'?
 - (i) J. F. McCloskey ()
 - (*ii*) F. N. Trefethen ()
 - (*iii*) Both (*i*) and (*ii*) ()
 - (*iv*) P. F. Adams ()

(b) Operations Research (OR), which is a very powerful tool for

- (*i*) research ()
- (*ii*) decision making ()
- (*iii*) operations ()
- (*iv*) All of the above ()

/568

[Contd.

(c) OR cannot give perfect _____ to a problem.

(i) answer ()
(ii) decision ()
(iii) solution ()
(iv) Both (i) and (iii) (

(d) Which technique is used in finding a solution for optimizing a given objective under some constraints?

)

- (*i*) Linear programming ()
- (*ii*) Queuing theory ()
- (*iii*) Waiting line ()
- (*iv*) All of the above ()
- *(e)* Which theory concerns making sound decisions under the conditions of certainty, risk and uncertainty?
 - (*i*) Game theory ()
 - (*ii*) Queuing theory ()
 - (iii) Network analysis ()
 - (*iv*) All of the above ()

(f) Which technique is used to imitate an operation prior to actual performance?

- (i) Simulation ()
- (*ii*) Decision theory ()
- (*iii*) Game theory ()
- *(iv)* Inventory control ()
- (g) In _____ model, there is risk and uncertainty.
 - (*i*) deterministic () (*ii*) probabilistic ()
 - (*iii*) Both (*i*) and (*ii*) () (*iv*) All of the above (
- (h) For solving an assignment problem, which method is used?
 - (i) Hungarian ()
 - (*ii*) American ()
 - (*iii*) Both (*i*) and (*ii*) ()
 - *(iv)* All of the above ()

VI/BCA/602 (iii) (OC)**/568**

[Contd.

)

- *(i)* If demand is lesser than supply, then dummy demand node is added to make it a
 - (*i*) simple problem ()
 - (*ii*) balanced problem ()
 - (*iii*) transportation problem ()
 - *(iv)* All of the above ()
- (j) One can find the initial basic feasible solution by using

)

- (i)VAM()(ii)MODI()(iii)optimality test(
- (*iv*) All of the above ()
- **2.** State whether the following statements are *True (T)* or *False (F)* by putting a Tick (✓) mark in the brackets provided : 1×5=5
 - (a) Dual of the dual is a primal. (T / F)
 - (b) Slack variables are added in the LHS of the constraint to convert the inequality ' ' into an equation. (T / F)
 - (c) VAM stands for Vogeal's approximation method. (T / F)
 - (d) In simplex method, we add artificial variables when no initial basic feasible solution exists. (T / F)
 - (e) If the feasible region of an LPP is empty, the solution is feasible.

(T / F)

SECTION-B

(*Marks* : 10)

Answer the following questions :

- 1. Define optimality and feasibility condition.
- 2. What are slack and surplus variables?
- 3. What is the way to balance a transportation model?
- **4.** Define linear programming.
- **5.** Define critical path.

VI/BCA/602 (iii) (OC)**/568**

3

2×5=10

[Contd.

(PART : B-DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

1.	(a)	Explain the scope of OR in modern management.	5
	(b)	Explain the phases of implementing OR.	5
		OR	
	(c)	Explain OR techniques.	5
	(d)	Write the applications of OR.	5
2.	(a)	Explain the major characteristics of linear programming problem.	2
	(b)	Solve the following by graphical method :	8
		Maximize $Z = 5x_1 = 4x_2$	
		subject to	
		$6x_1 4x_2 24$	
		$x_1 2x_2 6$	
		$x_1 \ x_2 \ 1$	
		$x_2 = 2$	
		$x_1, x_2 = 0$	
		OR	
	(c)	Solve the following by simplex method :	10
		Maximize $Z = 16x_1 = 15x_2$ subject to	
		$40x_1 31x_2 124$	
		$x_1 x_2 1$	

 $x_1 \quad x_2 \quad 1 \\
 x_1 \quad 3 \\
 x_1, x_2 \quad 0$

VI/BCA/602 (iii) (OC)**/568**

[Contd.

3. (a) Solve the following assignment model :

	Jack	Jill	Johnny
Washing	15	10	9
Cleaning	9	15	10
Panting	10	12	8

(b) Explain the steps involve in critical path problem.

OR

(c) Solve the following transportation problem :

					Supply
	10	2	20	11	15
	12	7	9	20	25
	4	14	16	18	10
Demand	5	15	15	15	

4. (a) Solve the following by dual simplex method :

3

0

Maximize Z $3x_1$ $2x_2$ x_3 subject to $3x_1$ x_2 x_3 3 $3x_1$ $3x_2$ x_3 6

 $x_1 \ x_2 \ x_3$

 x_1, x_2, x_3

OR

(b) Describe the similarities and differences of CPM and PERT constructions of network.

5

(c) Write the dual for the following primal :

Maximize Z $5x_1 \ 12x_2 \ 4x_3$ subject to $x_1 \ 2x_2 \ x_3 \ 10$ $2x_1 \ x_2 \ 3x_3 \ 8$ $x_1, \ x_2, \ x_3 \ 0$

VI/BCA/602 (iii) (OC)/568

[Contd.

5

10

10

5

5

5. (a) Find the initial basic feasible solution to the following transportation problem by (i) minimum cost method and (ii) North-West corner rule : 10

	<i>B</i> ₁	<i>B</i> ₂	B ₃	Supply		
<i>A</i> ₁	0	2	1	6		
A2	2	1	5	9		
A ₂ A ₃	2	4	3	5		
Demand	5	5	10			
OR						

- (b) Write the advantages and disadvantages of simulation.
- (c) Explain about sensitivity analysis.

* * *

5

5