Student's Copy

PHY/VI/12 (a) (PR)

(6th Semester)

2018

PHYSICS

TWELFTH (A) PAPER

(Solid-state Physics—II)

(Pre-revised) Full Marks: 55

Time : $2\frac{1}{2}$ hours

(PART : A—OBJECTIVE)

(Marks : 20)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks* : 5)

Tick (the correct answer in	the brackets	provided :	1×5=5
--------	--	-----------------------	--------------	------------	-------

1. Quantum of elastic vibration is

- (a) phonon
 ()
 (b) photon
 ()

 (c) graviton
 ()
 (d) meson
 ()
- 2. Susceptibility of a diamagnetic material is
 - (a) very large () (b) small but negative ()
 - (c) small but positive () (d) zero ()
- **3.** The process of producing electric dipoles inside the dielectric by an external electric field is
 - (a) dipole moment () (b) polarization ()
 - (c) susceptibility () (d) magnetization ()

/494

[Contd.

4. Separation between valence band and conduction band is measured in

	(a)	volts ()			(b)	metres ()				
	(c)	metre ¹ ()		(d)	electron volts	()			
5.	The	superconducting	state	is	perfectly	in nature.					
	(a)	paramagnetic	()	(b)	diamagnetic	()			
	(C)	ferromagnetic	()	(d)	ferrimagnetic	()			
		SECTION—B									
		(<i>Marks</i> : 15)									

Answer the following questions :

- Compute the cut-off frequency for a linear diatomic lattice if the velocity of sound and interatomic spacing in the lattice are 3 10³ ms¹ and 3 10¹⁰ m respectively.
- 2. Explain the domain theory of ferromagnetism.
- **3.** Obtain an expression for London penetration depth.
- 4. Explain the origin of energy gap.
- 5. Explain what is meant by polarization in dielectrics.

```
( PART : B—DESCRIPTIVE )
```

(Marks: 35)

The figures in the margin indicate full marks for the questions

1. Show that the dispersion relation for the lattice waves in a monatomic linear lattice of mass *m*, spacing *a* and the nearest neighbour interaction *C* is $2\sqrt{\frac{C}{M}} \sin \left| \frac{1}{2} \vec{k} a \right|$, where is the angular frequency and \vec{k} the wave vector. Discuss the dispersion behaviour at *(a)* low frequencies and *(b)* high frequencies. $4+1\frac{1}{2}+1\frac{1}{2}=7$

PHY/VI/12 (a) (PR)**/494**

 $3 \times 5 = 15$

OR

Discuss the vibrational modes of a diatomic linear lattice and also discuss the two branches of the dispersion relation curve. 4+3=7

2. Using quantum theory, obtain an expression for paramagnetic susceptibility. What is the difference with Langevin's classical theory?

6+1=7

OR

Discuss the formation and significance of the hysteresis loop. Show that the area under the hysteresis loop denotes the energy dissipated per unit volume of materials during each magnetizing cycle. 3+4=7

3. What is depolarization field? Obtain the expression for local electric field at an atom in dielectric material. 1+6=7

OR

Write short notes on (a) Lorentz field and (b) Clausius-Mosotti relation. $3^{1/2}+3^{1/2}=7$

4. What is the basic assumption of Kronig-Penney model? Discuss the results of Kronig-Penney models for (a) small barrier strength (P 0) and (b) extremely large barrier strength (P).

OR

Discuss the concept of effective mass of an electron. Explain how electron in a crystal can behave dynamically like a particle with variable mass. 5+2=7

5. Give an elementary treatment of BCS theory of superconductivity. Explain how the superconducting energy gap varies with temperature. 4+3=7

OR

- (a) Define superconductivity. What are type I and type II superconductors? 1+4=5
- (b) Explain briefly certain isotope effect of superconducting material.

* * *

PHY/VI/12 (a) (PR)**/494**