2018

(6th Semester)

PHYSICS

ELEVENTH PAPER

(Electromagnetic Theory)

(Revised)

Full Marks : 55

Time : $2\frac{1}{2}$ hours

(PART : A—OBJECTIVE)

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION—A (Marks:5)

Tick (\checkmark) the correct answer in the brackets provided :

- **1.** The energy density of a monochromatic plane wave travelling in vacuum is $\begin{pmatrix} 0 & permittivity & of free space, E = electric field \end{pmatrix}$
- **2.** The speed of an electromagnetic wave in a dielectric medium where $_0$ and $_4$ $_0$ is (*c* = speed of light in vacuum)
- **3.** An electric field \vec{E} in terms of scalar V and vector potential \vec{A} is (a) $\overrightarrow{V} \quad \frac{\vec{A}}{t}$ () (b) $\overrightarrow{V} \quad \frac{\vec{A}}{t}$ () (c) $\overrightarrow{A} \quad \frac{V}{t}$ () (d) $\overrightarrow{A} \quad \frac{V}{t}$ ()

/493

1×5=5

4. Slew rate of an op-amp is a parameter that defines

- (a) how rapidly the output changes with the change in input frequency ()
- (b) how rapidly the output changes with the change in operating voltage ()
- (c) the rate at which mathematical operation is performed ()
- (d) the rate of change of output resistance ()
- **5.** The decimal equivalent of $(1001)_2$ is
 - (a) 7
 ()
 (b) 8
 ()

 (c) 9
 ()
 (d) 10
 ()

SECTION—B

(Marks: 15)

Answer the following questions :

1. The electric field of an electromagnetic wave in vacuum is given by

 \vec{E}_x 0, \vec{E}_y 30 cos 2 10⁸ t $\frac{2}{3}x$, \vec{E}_z 0

where \vec{E} is in volts per meter, *t* is in seconds and *x* is in meters. Determine the wavelength, direction of propagation of the wave and direction of the magnetic field.

- 2. State and explain Brewster's law in electromagnetic waves.
- **3.** Magnetic vector potential is given by $\vec{A} = x^2 \hat{i} = 2xy \hat{j}$. Obtain the magnetic field at (1, 2, 0).
- **4.** What is output offset voltage of op-amp? Explain how it can be adjusted.

PHY/VI/11 (R)/493

[Contd.

3×5=15

5. Draw the output waveform for the given input waveforms to a two-input NAND gate :

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

1. Derive the Poynting theorem and obtain the expression for Poynting vector. 7

OR

- (a) Derive Maxwell's equation $\stackrel{\rightarrow}{\rightarrow} \vec{D}$, where \vec{D} is electric displacement is the charge density. and 3 (b) Using Maxwell's equations, discuss the boundary conditions for magnetic field vector at the interface between different media. 4 Deduce the laws of refraction for plane waves at the boundary of two **2.** (a) dielectrics from electromagnetic theory. 5 (b) A uniform plane wave whose electric field is given by E_I 100 cos(t 6 x) \hat{z} Vm¹ is incident from a region having 1 4₀, $_0$ normal to the plane surface of a material having $_2$ 9₀, 1 4 $_0$. Obtain the expression for the reflected electric field. 2 2 OR (a) Obtain the expression for skin depth when electromagnetic wave is 5 incident on a conducting surface from air medium.
 - (b) A 2 MHz electromagnetic wave propagates in a non-magnetic medium having a relative permittivity of 2 $_0$ and a conductivity of 100 S/m. Determine if the material is a good conductor or not. Calculate the skin depth. [$_0$ 8 85 10 12 Fm 1]

2

3

What do you mean by gauge transformations? Show that Lorentz condition leads to two decoupled differential equations in electric field and magnetic field.
 2+5=7

OR

What are the scalar and vector potentials in electromagnetic waves? Derive the Poisson's equation using vector potential with the current density. 7

4. (*a*) Draw the circuit diagram of a basic differentiator using op-amp. Derive the expression for its output voltage. Draw the output waveform for the square wave given below :

(b) Write at least four characteristics of ideal op-amp.

OR

- (a) With the help of appropriate circuit diagram, explain the use of op-amp as unity follower. Give at least one application of unity follower circuit. 3¹/₂
- (b) Explain CMRR of an op-amp. Give reason why high CMRR is suitable. $3\frac{1}{2}$
- 5. (a) Write the Boolean equation for the digital circuit shown below and give its truth table :

(b) Simplify the Boolean expression Z (\overline{A} C) (B \overline{D}) and realize its using NAND gates. 2+2=4

4

PHY/VI/11 (R)/493

[Contd.

5

2

OR

- (a) Write the truth table and draw the digital circuit of half adder. 4
- (b) Using 2's complement, perform binary subtraction of the following : 3
 - (i) $(110011)_2$ $(100111)_2$
 - (*ii*) $(101 \ 1101)_2$ $(101 \ 0111)_2$

* * *