2018

(6th Semester)

PHYSICS

TENTH PAPER

(Nuclear Physics—II)

(Revised)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

- **1.** In the semiempirical binding energy formula of a nucleus, which of the following energies is positive?
 - (a) Asymmetry energy () (b) Volume energy ()
 - (c) Coulomb energy () (d) Surface energy ()
- 2. Which of the following pairs are mirror nuclei?

(a)	$_{6}C^{13}$ and $_{6}C^{14}$	()	(b) $_7 N^{14}$ and $_6 C^{14}$	()
(C)	$_4\mathrm{Be}^7$ and $_3\mathrm{Li}^7$	()	(d) ${}_{5}B^{10}$ and ${}_{4}Be^{8}$	()

3. The mass of a deuteron (m_D) 2 01335 a.m.u., mass of a proton (m_p) 1 00728 a.m.u. and mass of a neutron (m_n) 1 00866 a.m.u. The binding energy of a deuteron is nearly [Given, 1 a.m.u. = 931 MeV] (a) 2.23 MeV (b) 1.22 MeV) (() (d) 28.1 MeV1.12 MeV (c)() ()

- **4.** The decay constant () is defined as the reciprocal of time during which the number of atoms of a radioactive substance falls to
 - (a) $\frac{1}{2}$ of its original value () (b) $\frac{1}{3}$ of its original value () (c) $\frac{1}{4}$ of its original value () (d) $\frac{1}{e}$ of its original value ()

/491

 $1 \times 10 = 10$

5.	According to nuclear shell model, the total angular momentum of ${}_8\mathrm{O}^{16}$ is						
	(a) $\frac{5}{2}$ ()	(b) $\frac{3}{2}$ ()					
	(c) $\frac{1}{2}$ ()	(d) zero ()					
б.	The threshold energy is applicat	ple only for					
	(a) exoergic reactions ()(c) exothermic reactions ((b)endoergic reactions()(d)all nuclear reactions()					
7.	. Which of the following particles can be accelerated in a cyclotron?						
	(a)Electron()(c)Proton()	(b) Neutron () (d) All of the above ()					
8.	If 2000 particles are passing through the GM counter in a given time and 1500 are recorded in the same time, then efficiency of the counter is $(1) - 75\%$						
	(a) 75% () (c) 30% ()	(b) 50% () (d) 15% ()					
9.	The primary cosmic radiations contains mainly	s approaching the earth's atmosphere					
	 (a) protons and -particles (b) electrons and -particles (c) protons and -mesons (d) electrons, positrons and pho 	() () otons ()					
10.	Which of the following quarks is positively charged?						
	(a) Strange (s) () (c) Charm (c) ()	(b) Bottom (b) () (d) Down (d) ()					
	SECTION—B						
	(<i>Marks</i> : 15)						

Answer the following questions :

- 1. Mention at least three important properties of nuclear forces.
- 2. Show that the binding energy per nucleon for -particle of Helium nucleus $(_2\text{He}^4)$ is 7.04 MeV. Given masses m_p 1 007276 a.m.u., m_n 1 008665 a.m.u., M 4 001506 a.m.u. and 1 a.m.u. = 931 MeV.
- **3.** Calculate the Q-value of the following nuclear reaction in MeV : ${}_{3}\text{Li}^{7}$ ${}_{1}\text{H}^{1}$ ${}_{2}\text{He}^{4}$ ${}_{2}\text{He}^{4}$. Given that masses of ${}_{3}\text{Li}^{7}$ 7 018222 a.m.u., ${}_{1}\text{H}^{1}$ 1 008144 a.m.u. and ${}_{2}\text{He}^{4}$ 4 003873 a.m.u. Comment whether the energy is released or absorbed in this reaction.

PHY/VI/10 (R)**/491**

 $3 \times 5 = 15$

2

- **4.** What is the main limitation of a cyclotron and how this problem is solved in synchrotron and synchrocyclotron?
- **5.** What are hadrons? Explain with examples how these are classified based on quark structure.

(**PART : B**—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- **1.** (a) Define isotope, isobar and isotone and give example of each.
 - (b) Show that the nuclear density is constant and of the order of 10^{17} kg.m ³ for all nuclei. Mention a celestial object having density of same order. 3+1=4
 - (c) Write a short note on nuclear stability with reference to neutron-proton ratio. 3

OR

- (a) Define binding energy of a nucleus and write its expression. Explain why the surface effect reduces the binding energy by $E_s bA^{2/3}$, where A is the mass number and b is a constant. 2+2=4
- (b) "The electrostatic repulsion between each pair of protons in a nucleus also contributes towards reducing its binding energy." Explain this statement and find the expression of Coulomb energy E_C .
- (c) Draw a curve of binding energy per nucleon in MeV as a function of mass number A and discuss its significance in explaining nuclear fission and fusion.
- **2.** (a) Derive the exponential decay law of a radioactive substance. Hence show that the half-life T = 0.693, where is the decay constant.

4+2=6

2

3

(b) Define mean-life (T_m) of a radioactive substance and hence show that $T_m = 1 44T$. 1+3=4

OR

- (a) Discuss three different types of -decay with representative reactions and examples.
- *(b)* What conservation laws must be followed by -ray emission from a radioactive substance? What do you mean by nuclear isomerism? 3+1=4
- **3.** (a) State the main assumptions of nuclear shell model and mention the experimental evidences in favour of it.

3

- (b) Based on the level schemes of single-particle shell model, show that the total angular momentum of the nucleus of ${}_{8}O^{17}$ is $\frac{5}{2}$.
- (c) What do you mean by threshold energy and Q-value of a nuclear reaction? Establish the relation between these. 2+3=5

OR

- (a) Explain how the Bohr-Wheeler theory accounts for various properties of nuclear fission.
- (b) What is fusion reaction? Give an example. Why is it called thermonuclear reaction?
- (c) Write a short note on nuclear reactor.
- **4.** (a) Describe the construction and working of a linear accelerator. What are its limitations? 4+2=6
 - (b) Discuss the construction and working of a proportional counter. Why is the device so named? 3+1=4

Write short notes on any *two* of the following : $5 \times 2=10$

- (a) Betatron
- (b) Synchrocyclotron
- (c) Geiger-Müller counter
- (d) Wilson cloud chamber
- **5.** (a) What are primary and secondary cosmic rays? Discuss 'east-west effect' to explain that primary cosmic rays carry mainly positively charged particles. 2+3=5
 - (b) Describe with schematic diagrams, Bhabha's theory of cosmic-ray showers.

OR

(a) What are leptons and anti-leptons? Mention the names of all leptons with their charge and lepton numbers. Show that the lepton numbers remain conserved in the following neutron decay process :

$$n p e v_e$$

where p is proton, e is electron and \overline{v}_e is anti-neutrino. 2+2+1=5

(b) What do you mean by baryon number (B), hypercharge (Y) and strangeness (S)? Mention the relation among those and verify the relation for neutron. 3+2=5

* * *

PHY/VI/10 (R)**/491**

8G-160

2

5

2 3