2018

(6th Semester)

PHYSICS

NINTH PAPER

(Method of Mathematical Physics—II)

(Revised)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A (*Marks*: 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

1. In the differential equation

$$(1 \quad x)^2 \frac{d^2 y}{dx^2} \quad 2x \frac{dy}{dx} \quad l(l \quad 1)y \quad 0$$

- (a) x = 0 is an ordinary point (
- (b) x 1 are regular singular points ()
- (c) Both (a) and (b) are correct ()
- (d) x 1 are irregular singular points ()
- **2.** The displacement function for a string of length l fixed at both ends with zero initial velocity is given by

$$u(x, t) = {n \choose l} C_n \cos \frac{n ct}{l} D_n \sin \frac{n ct}{l} \sin \frac{n}{l} x,$$

)

then

(a)
$$D_n$$
 0
 ()
 (b) C_n
 0
 ()

 (c) C_n
 D_n
 0
 ()
 (d) C_n
 D_n
 0
 ()

/489

[Contd.

- **3.** The value of the integral $\int_{0} \{J_{2}(x) \mid J_{2}(x)\} dx$ is
 - (a) 0 () (b) 2 ()
 - (c) 2 () (d) 1 ()
- **4.** The value of $P_3(x)$ is
 - (a) $\frac{1}{2}(3x^2 \ 1)$ (b) 3x (c)

(c)
$$\frac{1}{2}(5x^3 \ 3x)$$
 () (d) $\frac{1}{2}(5x^3 \ 1)$ ()

- **5.** In the half-range series of the function f(x) in the interval (0,), we get sine series if
 - (a) f(x) is even in the interval (,) ()(b) f(x) is odd in the interval (,) ()(c) f(x) is even in the interval (0,) ()(d) f(x) is odd in the interval (0,) ()
- **6.** The Fourier transform of $\frac{df}{dt}$ i.e., F.T. $\frac{df}{dt}$ is
 - (a) $\frac{1}{\sqrt{2}}$ $f(t)e^{it}dt$ () (b) $\sqrt{\frac{1}{2}}$ $f(t)e^{it}dt$ () (c) $\frac{i}{\sqrt{2}}$ $f(t)e^{it}dt$ ()

(d)
$$\frac{1}{i\sqrt{2}}$$
 $f(t)e^{it}dt$ ()

PHY/VI/09 (R)/489

[Contd.

7. If f(s) is the Laplace transform of F(t), then $\mathscr{L}^{-1}[f(as)]$ is

	(a)	$\frac{1}{a}F \frac{t}{a}$		()			(b)	$\frac{1}{a}F \frac{a}{t}$		()
	(c)	$aF \frac{t}{a}$		()			(d)	$aF \frac{a}{t}$	()	
8.	Ľ	$\frac{dF(t)}{dt}$	is									
	(a)	sF(t)	F (0)	()						
	(b)	$\mathscr{L}[F(t)]$	t)] s	F(0)		()					
	(c)	s£[F	(<i>t</i>)]	F(0)		()					
	(d)	s£ di	$\frac{F(t)}{dt}$	F ((D)	()					
9.	The	final v	alue	of I i	n th	e DC) statem	ent,	DO 10 <i>1</i>	1, 5	5, 2	is
	(a)	1	()								
	(b)	3	()								
	(c)	2	()								
	(d)	5 ()									
10.	If I	3, J	8 ai	nd <i>K</i>	4, 1 <i>N</i>	the v 3	value of J / I K	N in 4 /	the fold J	lowing	g sta	tement
	is											
	(a)	$\frac{1}{2}$	()								
	(b)	$\frac{3}{2}$	()								
	(c)	1	()								

PHY/VI/09 (R)**/489**

(d) 0 ()

[Contd.

Answer the following questions :

- **1.** Find the differential equation for which the solution is $y = c_1 e^x = c_2 e^x = 3$.
- 2. Using the recursion relation

$$\frac{d}{dx}[x^n J_n(x)] \quad x^n J_{n-1}(x)$$

show that $\int_0^x x^n J_{n-1}(x) dx \quad x^n J_n(x).$

3. If g() is the Fourier transform of f(t), then show that the Fourier transform of $f(t)\cos at$ is given by $\frac{1}{2}[g(a) g(a)]$.

- **4.** If f(s) is the Laplace transform of F(t), then show that $\mathscr{L}^{-1}[f(s \ a)] e^{at}F(t)$.
- **5.** A candidate passes an examination if he secures 40 marks or more. Write a program segment to display PASS or FAIL according to the marks obtained.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

1. (a) Solve the differential equation

$$\frac{d^2y}{dx^2} \quad \frac{1}{2x}\frac{dy}{dx} \quad \frac{1}{4x}y \quad 0$$

about x = 0 by power series method.

(b) Solve the differential equation of heat flow $-\frac{t}{t} = h^2 - \frac{2}{x^2}$ under the boundary conditions (0, t) = (l, t) = 0, t = 0 and (x, 0) = x, 0 = x - l; where l is the length of the bar.

PHY/VI/09 (R)/489

[Contd.

6

3×5=15

OR

- (a) Write down the Laplace equation in two-dimensional polar coordinates and solve it by the method of separation of variables.
 - (b) Solve the following differential equation $(1 \ x^2)D^2 \ xD \ y$ 0; where $D \ \frac{dy}{dx}$ by power series method. 5

$$P_n(x) = \frac{1}{2^n (n!)} \frac{d^n}{dx^n} (x^2 - 1)^n$$
 5

(b) Prove that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{x}} \sin x.$$
 5

OR

- **4.** (a) Prove that ${a \atop 0} J_n(r) J_n(r) r dr$ 0; where and are different roots of $J_n(a) = 0.$
 - (b) Show that $H_n(x)$ is the coefficient of z^n in the expansion of $e^{x^2} (z x)^2$.

5. (a) Obtain the Fourier series of a function $f(x) = x^2$; x. Hence show that $n = 1\frac{1}{n^2} = \frac{2}{6}$. 5+1

(b) Express the function

$$f(x) = \begin{array}{ccc} 1 & \text{for } |x| & 1 \\ 0 & \text{for } |x| & 1 \end{array}$$

as a Fourier integral and hence evaluate $\int_0 \frac{\sin \cos x}{d} d$. 3+1

OR

- **6.** (a) Find the Fourier sine transform of $\frac{e^{-ax}}{x}$.
 - (b) Find the Fourier sine and cosine transforms of $f(t) = e^{-pt}$, p = 0. Hence evaluate $\int_{0}^{1} \frac{\cos t}{p^2 - 2} d$. 5+1

PHY/VI/09 (R)**/489**

- 7. (a) Find the Laplace transform of $F(t) = t^2 e^t \sin 4t$.
 - (b) Obtain the Laplace transform of half-wave rectifier wave function

with period $T = \frac{2}{2}$.

OR

8. (a) Find the inverse Laplace transforms of $f(s) = \frac{1}{s(s-2)^3}$. 5 (b) Using Laplace transform, evaluate the integral $\cos x^2 dx$. 5

9. (a) Write down the general form of the DO loop and explain it. 1+2

- (b) Write a FORTRAN program to read x and n and evaluate the sum of the series $1 \ x \ x^2 \ \cdots \ x^n$.
- (c) Write a DO loop to evaluate and print the values of quadratic polynomial $y x^2$ 10x 11 for the values x 0 0 to 1 0 in steps of 0 2. 3

OR

- **10.** (a) Write a FORTRAN program to read t and print x, y, z, if $x = 8t^2 = t^3 = 4$, y sin t cos 2t, z $e^{3t} = 5$.
 - (b) Write a program segment to evaluate the function

 $\begin{array}{rcrcrcrc}
x^2 & \sin 2x & ; & x & 3 \\
f(x) & 10 & 5 & ; & x & 3 \\
& & x^3 & \cos 3x & ; & x & 3
\end{array}$

(c) What do you mean by FORMAT specification? Explain different types of FORMAT specifications. 1+3

6

PHY/VI/09 (R)**/489**

8G—160

4

6

4

3