PHY/VI/09 (PR)

2018

(6th Semester)

PHYSICS

NINTH PAPER

(Method of Mathematical Physics—II)

(Pre-Revised)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. The value of (1) is

(a)	()	<i>(b)</i> 1 ()
(c)	()	(d) 0 ()

2. The value of (z, 1) is

(a) $\frac{1}{z}$ () (b) $\frac{1}{z \ 1}$ () (c) $\frac{1}{z(z \ 1)}$ () (d) $\frac{z}{z \ 1}$ ()

/488

3. For an arbitrary well-behaved function, the value of

f(x) (x a) dx

is

- (a) 0 () (b) a ()
- (c) f(x) () $(d) f(a) \quad ()$
- 4. Which of the following represents Fourier transform?
 - (a) $g() \quad f(t)e^{it}dt \quad ()$ (b) $g() = \int_{0}^{t} f(t)e^{-t}dt$ () (c) $g() = \int_{0}^{t} f(t) t J_{n}(t) dt$ () $(d) \quad g() \quad {}_{0} f(t)t \quad {}^{1}dt \qquad ()$

5. The inverse Laplace transform of $\frac{1}{s(s^2 - 1)}$ is

(a) $(1 \cos t)$ () () (b) $(1 \cos t)$ () (c) $(1 \sin t)$ (d) $(1 \sin t)$ ()

6. The Laplace transform of (t) is

(a) 1 ()
(b) 0 ()
(c)
$$\sqrt{2}$$
 ()
(d) $\frac{1}{\sqrt{2}}$ ()

PHY/VI/09 (PR)/488

7. In the group $G \{E, A, A^2\}$, the element conjugate to A^2 is

- (a) E ()
- (b) A ()
- (c) A^2 ()
- $(d) A^2$ ()

8. The group of order 4

- (a) is always a cyclic group ()
- (b) is never a cyclic group ()
- (c) may or may not be a cyclic group ()
- (d) does not contain identity element ()

9. A number or a string of FORTRAN characters is called

- (a) constant ()
- (b) character set ()
- (c) expression ()
- (d) variable ()
- **10.** In FORTRAN, ______ statement is used to transfer data from input device to the main memory of the computer.
 - (a) WRITE ()
 - *(b)* READ ()
 - (c) FORMAT ()
 - (d) END ()

PHY/VI/09 (PR)**/488**

SECTION—B (Marks:15)

Answer the following questions :

1. Prove that $(n \ 1) \ n \ (n)$.

- **2.** If $f(t) = a_1 f_1(t) = a_2 f_2(t) \cdots$, then show that the Fourier transform of f(t) is given by $g() = a_1 g_1() = a_2 g_2() \cdots$ where $g_1(), g_2(), \cdots$ are Fourier transforms of $f_1(t), f_2(t) \cdots$ and a_1, a_2, \cdots are constants.
- **3.** If f(s) is the Laplace transform of F(t), then show that the Laplace transform of F(at) is $\frac{1}{a}f \frac{s}{a}$.
- **4.** Generate a group starting from an element A subject only to the condition $A^n = E$, such that n is the smallest positive number satisfying the condition.
- 5. Write a FORTRAN program to convert Centigrade to Fahrenheit.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

1. (a) Show that the gamma function can be expressed as

$$(n) \quad \frac{1}{n} \quad {}_{0} e^{-y^{\frac{1}{n}}} dy$$

and hence deduce the value of $\frac{1}{2}$.

(b) Show that

$$\int_{0}^{/2} \sin^{p} \cos^{q} d = \frac{\frac{p}{2}}{\frac{p}{2}} \frac{\frac{q}{2}}{\frac{p}{2}}$$
3

PHY/VI/09 (PR)**/488**

[Contd.

3+1

 $3 \times 5 = 15$

(c) Show that the error function satisfies the relation $er f_c(x) er f_c(x) 2.$ 3

OR

(a) Show that

$${}_{0} \frac{y^{m-1}}{(1-y)^{m-n}} dy {}_{0} \frac{{}_{1} \frac{y^{m-1}}{(1-y)^{m-n}} dy}{(1-y)^{m-n}} dy (m, n)$$

(b) Show that

$${}^{1}_{0}x^{m-1}(1-x^{a})^{n}dx \quad \frac{1}{a} - \frac{\frac{m}{a}}{\frac{m}{a}} \frac{n!}{n-1}$$
 3

(c) Show that for factorial function

$$()_n \quad \underline{(n)}$$
 2

2. (a) Obtain Fourier series expansion for a half-wave rectifier in which current is given by

$$I \qquad \begin{array}{cccccccc} I_{0} \sin t; & 0 & t & T/2 \\ 0 & ; & T/2 & t & T \end{array}$$

(b) If g() is the Fourier transform of f(t), then show that the Fourier transform of f(at) is $\frac{1}{a}g - \frac{1}{a}$.

OR

(a) Find the Fourier transform of the slit function f(x) defined as

(b) Find the Fourier sine transform of $f(t) = e^{-pt}$, p = 0. Hence evaluate

$$_{0}\frac{\sin t}{p^{2}-2}d \qquad \qquad 3+1$$

(c) Find the Fourier cosine transform of a function f (x) which is unity for
 0 x a and zero for x a.
 3

PHY/VI/09 (PR)/488

- **3.** (a) Find Laplace transform of t^n , n 1. What will be the Laplace transform of \sqrt{t} ? 2+1
 - (b) Find the Laplace transform of sawtooth wave function

$$F(t) \quad \frac{dt}{T} \text{ for } 0 \quad t \quad T \text{ and } F(t \quad T) \quad F(t) \qquad 3$$

(c) Find the inverse Laplace transform of

$$\frac{s^2 \ 2s \ 3}{s(s \ 3)(s \ 2)}$$
 4

OR

- (a) Find the inverse Laplace transform of $\frac{1}{(s \ 1)(s^2 \ 1)}$. 5
- (b) Using Laplace transform, evaluate the integral

$${}_{0}t^{2}e^{-t}\sin t\,dt$$

(c) Find the Laplace transform of the function

$$F(t) \quad \frac{e^{at} \quad 1}{a} \qquad \qquad 2$$

- 4. (a) Prove that the reciprocal of a product of two or more elements of a group is equal to the product of the reciprocals in reverse order. 3
 - (b) What do you mean by conjugate elements? State and prove the properties of conjugate elements. 1+6

OR

- (a) Show that the three cube roots of unity form an Abelian group under multiplication.
- (b) Generate a group from two elements A and B subject only to the relations $A^2 B^3 (AB)^2 E$.
- (c) Show that the four matrices

form a group under matrix multiplication.

PHY/VI/09 (PR)**/488**

[Contd.

1 0 3

3

4

5. (a) State and explain FORMAT specifications.

50

- (b) Write a FORTRAN DO loop to print the negative number between 1 and 100 and their squares and cubes. 5
- (c) Suppose A = 2, 5, B = 3, 5, J = 5 and K = 10. What will be the value 2 of J after the following program segment is executed?

IF (2*K .LE. 3*J) GO TO 50 J = J + 1GO TO 60 J = K60 J = J + KOR

(a) Explain the 'arithmetic IF' statement with an example. 3

- (b) Write a FORTRAN DO loop to read 100 numbers and print all the numbers less than 40. 4
- (c) Write a program segment to evaluate the function

 $x^2 \sin 2x$; x 3 $\begin{array}{ccccccc} f(x) & 10 & 5 & ; & x & 3 \\ & x^3 & \cos 3x & ; & x & 3 \end{array}$

* * *

7

3

3