PHY/VI/CC/18

Student's Copy

2019

(CBCS)

(6th Semester)

PHYSICS

ELEVENTH PAPER

(Thermal and Statistical Physics)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

1. According to kinetic theory of gases, energy associated with one gram molecule of a diatomic gas is

$$(a) \quad \frac{3}{2} K_B T \qquad (\qquad)$$

$$(b) \quad \frac{3}{2} RT \qquad (\qquad)$$

$$(c) \quad \frac{5}{2} K_B T \qquad (\qquad)$$

$$(d) \quad \frac{5}{2} RT \qquad (\qquad)$$

/639

[Contd.

- **2.** If C_p 29 08 J mole ¹K ¹ and C_v 20 77 J mole ¹K ¹, then the gas molecule is
 - (a) monoatomic ()
 - (b) diatomic ()
 - (c) triatomic ()
 - (d) Atomicity cannot be determined from the given data ()

3. Viscosity of a gas is due to transport of

- (a) momentum ()
- (b) energy ()
- *(c)* mass ()
- (d) temperature ()

4. The change in specific volume when 1 kg of water freezes is 91 10^{6} m³ and Latent heat of ice $L = 3 = 36 = 10^{5}$ J kg⁻¹. Then the pressure required to freeze ice at 272 K is

- (a) 134.2 atm. ()
- (b) 135·2 atm. ()
- (c) 136.2 atm. ()
- (d) 137.2 atm. ()

5. The thermodynamic probability of a system at equilibrium is

- (a) maximum ()
- *(b)* minimum ()
- (c) 1 ()
- (d) 0 ()
- **6.** The probability of occurrence of two independent events is equal to the _____ of their probability.

- (b) difference ()
- (c) product ()
- (*d*) ratio ()

PHY/VI/CC/18/639

[Contd.

7. The internal energy U of a system is given by

- (a) $NK_BT \frac{1}{T}(\log Z)$ ()
- (b) $NK_B T^2 \frac{1}{T} (\log Z)$ ()
- (c) $NK_B T^3 \frac{1}{T} (\log Z)$ ()
- (d) $NK_BT^4 \frac{1}{T}(\log Z)$ ()

8. In canonical ensemble, the partition function is expressed as

(a) $_{r}e^{\frac{E_{r}}{K_{B}T}}$ () (b) $_{r}e^{K_{B}TE_{r}}$ () (c) $_{r}e^{\frac{E_{r}}{K_{B}T^{2}}}$ () (d) $_{r}e^{K_{B}T^{2}E_{r}}$ ()

9. Pauli's exclusion principle applies to

- (a) M-B statistics ()
 (b) F-D statistics ()
 (c) B-E statistics ()
 (d) All of the above ()
- **10.** The number of different arrangements of six indistinguishable particles among four cells of equal a priori probability if there is no restrictions on the number of particles entering into a cell is
 - (a) 24 ()
 - *(b)* 30 ()
 - *(c)* 17280 ()
 - (d) 84 ()

PHY/VI/CC/18/639

[Contd.

SECTION-B

(*Marks* : 15)

Answer the following questions :

1. Calculate the Avogadro's number if the mean kinetic energy of a molecule of a hydrogen gas at 0 °C is 5 62 $\,$ 10 23 J.

OR

- **2.** Using Maxwell's law of distribution of velocities, show that the most probable velocity of gas molecules is given by $\sqrt{\frac{2K_BT}{m}}$, where K_B is the Boltzmann's constant.
- **3.** Show that $C_P = C_V = TE^{-2}V$, where *E* is the bulk modulus of isothermal elasticity and is the coefficient of volume expansion.

OR

- **4.** State Gibb's phase rule. Show that at triple point, the three phases of water can coexist in equilibrium at a fixed temperature and a fixed pressure only and neither can be varied arbitrarily.
- 5. Discuss the postulates of 'Equal a priori Probability'.

OR

- **6.** Show that the number of phase cells in the given energy range for a free particle is given by $\frac{4}{3h^3} (2mE)^{\frac{3}{2}}$.
- **7.** A monatomic gas is enclosed at a temperature *T* in a container of volume *V*. If the partition function of the gas is given by $\frac{V}{\frac{3}{2}}$, where is a constant

and $\frac{1}{K_B T}$, then find the average energy of the molecule.

OR

8. Show that for a system in thermal equilibrium at absolute temperature *T*, the Boltzmann partition function in the energy state E_i is $Z_i g_i e^{\frac{E_i/K_BT}{E_i/K_BT}}$.

PHY/VI/CC/18/639

 $3 \times 5 = 15$

9. State three points to distinguish among M-B, B-E and F-D statistics.

OR

10. Calculate the Fermi energy of copper at T = 0. Given; density of copper $9g / \text{cm}^3$ and atomic weight of copper 63 5g.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- (a) Define root mean square velocity. Using Maxwell-Boltzmann distribution law, find an expression for the root mean square velocity of the molecule.
 - (b) Calculate the probability that the speed of oxygen molecule lies between 100 and 101 m/s at 200 K.
 - (c) The average kinetic energy of a gas molecule at a certain temperature is
 6 21 10²¹ joule. Find the temperature.

OR

- 2. (a) Define Brownian motion. State the essential features of Brownian motion. Discuss Einstein's theory of translational Brownian motion. 1+2+5=8
 - *(b)* Compute the average translational kinetic energy per molecule in a gas at room temperature (27 °C) and hence calculate the temperature needed to excite hydrogen atom. (Given : Excitation potential of hydrogen atom 10 2 eV)
- 3. (a) Deduce an expression for the viscosity of a gas in terms of mean free path of its molecules. Discuss the variation of viscosity with temperature and pressure.
 - (b) The viscosity of oxygen at 16 °C is 169 10 ⁷ decapoise, calculate the diameter of the oxygen molecule.
 3

PHY/VI/CC/18/639

[Contd.

3

2

2

4. (*a*) Using Maxwell's thermodynamical relations, show that for an isothermal process

$$\frac{U}{V}_{T} \qquad T \quad \frac{P}{T}_{V} \qquad P$$

Hence discuss the variation of internal energy with volume during an isothermal process for *(i)* a perfect gas and *(ii)* a van der Waals' gas. 3+2+2=7

(b) Using Maxwell's relations, show that

$$T dS \quad C_p dT \quad T \quad \frac{V}{T} \quad P \qquad 3$$

5. (a) What are the phase space and phase cells? Using the uncertainty principle, explain the meaning of a point in a phase space. 1+1+4=6

(b) Derive the relation S lln (E), where S = entropy and (E) thermodynamic probability.

OR

6.	(a)	Derive	the	Bolt	zmann's canonica	1 distribution	la	w.				6
	(b)	Show	that	for	thermodynamical	equilibrium	of	any	two	systems	in	

7. (*a*) Explain micro-canonical, canonical and grand canonical ensembles with the help of necessary diagram.

contact, the parameter of the two systems must be identical.

(b) Show that the grand potential for a thermodynamic system is related to the grand partition function \mathbb{Z} as ${}^{1}\ln\mathbb{Z}$.

OR

8. (a) Derive the probability distribution function in canonical ensemble. 5

6

(b) Derive the Stirling's formula for a collection of large number of particles.

PHY/VI/CC/18/639

4

6

- **9.** (a) Using Maxwell-Boltzmann distribution law, show that the internal energy of an ideal monatomic gas depends only on its temperature. Hence show that $C_v = \frac{3}{2}R$. 4+1=5
 - (b) Using the Fermi-Dirac distribution law, obtain an expression for energy distribution of free electrons in a metal.5

OR

- 10. (a) Find an expression for the most probable distribution of the particles among various energy levels for a system obeying Bose-Einstein statistics.
 - (b) Using Bose-Einstein statistics, deduce Planck's Radiation law. 4

* * *