2019

(CBCS)

(5th Semester)

PHYSICS

EIGHTH (A) PAPER

(Atomic and Molecular Spectroscopy)

Full Marks : 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

- **1.** In hydrogen spectrum, the wave number limit corresponding to Balmer series is
 - (a) R/4()(b) R/9()(c) R/16()(d) R/25()

where R is Rydberg constant.

2. The selection rule for azimuthal quantum number (k) in Sommerfeld atomic model is

(a)	k	0		()		(b)	k	1	()
(c)	k	0,	1		()	(d)	k		()

/129

[Contd.

1×10=10

3. The possible quantum numbers *n*, *l*, *j* and m_j of the spectral notation $3^2 d_{3/2}$ are

(a)	п	2, l	1, j	3 / 2, m _j	3/2	()
(b)	п	2, l	2, j	3 / 2, m _j	3/2	()
(c)	п	3, l	2, j	3 / 2, m _j	3/2	()
(d)	п	3, l	1, j	3 / 2, m _j	3/2	()

4. The possible value of spin quantum number (s) of helium atom is

(a)	$\frac{1}{2}$	()	(b) $\frac{1}{2}$	()
(c)	1	()	(d) 1	()

5. The distance of the ${}^{2}d_{3/2}$ level from hypothetical term value for the centre of gravity of the doublet as a result of spin-orbit interaction is given by (symbols have their usual meaning)

(a)
$$(j \ 3/2)$$
 $\frac{3}{2}a$ () (b) $(j \ 3/2)$ a ()
(c) $(j \ 3/2)$ $\frac{1}{2}a$ () (d) $(j \ 3/2)$ a ()

6. What is the need to achieve population inversion in LASER?

- (a) To excite most of the atoms ()
- (b) To bring most of the atoms to ground state ()
- (c) To achieve stable condition (
- (d) To reduce the time of production of LASER ()
- **7.** The spectral lines in rigid diatomic molecules are separated by a constant distance of

)

- (a) $1B \text{ cm}^{-1}$ ()
 (b) $2B \text{ cm}^{-1}$ ()

 (c) $3B \text{ cm}^{-1}$ ()
 (d) $4B \text{ cm}^{-1}$ ()
- 8. The selection rules for the anharmonic oscillator is

(a)	0	()			(b)	1	()
(c)	1,	2,	3,	()	(d)		()

PHY/V/CC/14 (a)**/129**

[Contd.

9. Raman shift generally lies within the range

(a)	100 cm 1 –3000 cm 1	()	<i>(b)</i> 200 cm 1 -4000 cm 1	()
(C)	100 cm 12000 cm 1	()	(d) 200 cm 1 -2000 cm 1	()

- **10.** The order of magnitude of electronic energy (E_e) , vibrational energy (E_v) and rotational energy (E_r) levels in molecular spectra is
 - (a) $E_r \ E_v \ E_e$ () (b) $E_e \ E_v \ E_r$ () (c) $E_v \ E_r \ E_e$ () (d) $E_v \ E_e \ E_r$ () SECTION—B (*Marks*: 15)

Answer the following questions :

1. Show that the speed of orbiting electron is inversely proportional to the principal quantum number n and find the speed of electron in the first Bohr orbit.

OR

- **2.** If the Rydberg constant is $R = 1097 = 10^7 \text{ m}^{-1}$, find the wavelength of associated with H, H, H lines.
- **3.** Find the maximum number of electrons with all the shells fill up to principal quantum number n = 4.

OR

- **4.** The term of a particular atomic state is ${}^{2}d_{5/2}$. What are the values of *L*, *S* and *J*?
- **5.** Explain the method of pumping in LASER.

OR

6. Explain the origin of characteristic X-ray spectra.

PHY/V/CC/14 (a)**/129**

[Contd.

 $3 \times 5 = 15$

7. Classify the bands obtained in molecular spectra of a molecule.

OR

- **8.** Differentiate between the spectra from the rigid diatomic rotator and non-rigid diatomic rotator.
- **9.** The exciting line in an experiment is 5460 Å and the Stokes line is at 5520 Å. Find the wavelength of anti-Stokes line.

OR

10. Explain the terms 'sequence' and 'progression' in absorption and emission of vibrational spectra.

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

 Discuss the characteristics of Sommerfeld's elliptical orbits. Show that the s-electron orbit is most elliptic in any family of orbits having the same major axis.

OR

- **2.** Deduce the famous Rutherford's alpha scattering formula. 10
- 3. (a) Derive an expression for the magnetic moment of hydrogen atom. Find the value of Bohr magneton.5
 - (b) What is Larmor's precession? Derive an expression for the Larmor's precessional frequency. 1+4=5

OR

4. State and explain Pauli's exclusion principle. Apply it to determine the maximum number of electrons that can exist in a shell. 4+6=10

PHY/V/CC/14 (a)**/129**

[Contd.

- 5. (a) What is population inversion? What do you mean by pumping process? How many types of pumping processes are employed while achieving population inversion? 1+1+5=7
 - (b) What do you mean by three-level laser?

OR

- **6.** What are normal and anomalous Zeeman effects? Use classical ideas to explain normal Zeeman effect. 4+6=10
- 7. (a) Explain how diatomic molecule can behave as a harmonic oscillator. Hence find the energy levels.
 - (b) Write two applications of vibrational spectroscopy.

OR

- 8. Obtain an expression for the rotational energy levels of a diatomic molecule, taking it as a rigid rotator. Discuss its spectrum and the relevant selection rule.
- **9.** (a) Describe Frank-Condon principle in emission and in absorption. 4
 - (b) What are sequence and progression in absorption and in emission for electronic spectrum?

OR

- 10. (a) How is Raman spectra used for structure determination of diatomic and triatomic molecules?
 - (b) Give the accounts of vibrational spectra.

* * *

PHY/V/CC/14 (a)**/129**

20G—150

4

3

2

5