PHY/V/CC/09

Student's Copy

2019

(CBCS)

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—II)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Put a Tick (\checkmark) mark against the correct answer in the brackets provided : $1 \times 10 = 10$

- **1.** If $z e^i$, then \cos is given by
 - $(a) \ \frac{1}{2i} \ z \ \frac{1}{z} \qquad ()$ $(b) \ \frac{1}{2} \ z \ \frac{1}{z} \qquad ()$ $(c) \ \frac{1}{2i} \ z \ \frac{1}{z} \qquad ()$ $(d) \ \frac{1}{2} \ z \ \frac{1}{z} \qquad ()$

/126

2. The function $f(z) = \frac{e^z}{z^2 + 4}$ has

- (a) two simple poles at z = 2i and at z = 2i ()
- (b) two simple poles at z = 2 and at z = 2 ()
- (c) a simple pole at z = 2 and a pole of order 2 at z = 2 ()
- (d) a simple pole at z = 2i and a pole of order 2 at z = 2i ()

3. The differential equation
$$\frac{d^2y}{dx^2} + \frac{dy}{dx} + \frac{dy}$$

4. The differential equation for which the solution is $y c_1 e^x c_2 e^x$ 3, is

- (a) $d^2y / dx^2 + y = 3$ ()
- (b) $d^2y / dx^2 + y = 3$ ()
- (c) $d^2y / dx^2 y$ ()
- (d) $d^2y / dx^2 + y = 6$ ()

PHY/V/CC/09/126

5. Which of the following values of the Hermite polynomial is correct?

- (a) $H_0(x) x$ ()
- (b) $H_1(x) = 2x^2$ ()
- (c) $H_n(x) (1)^n H_n(x)$ ()
- (d) $H_{2n}(0) = 0$ ()
- 6. Which of the following values of the Legendre polynomial is not correct?
 - (a) $P_n(1) \ 1$ () (b) $P_n(1) \ (1)^n$ () (c) $P_n(x) \ (1)^n P_n(x)$ () (d) $P_{2n}(x) \ P_{2n}(x)$ ()
- **7.** If g(k) be the Fourier transform of f(x), then Fourier transform of f(ax) is
 - (a) $\frac{1}{a}g \frac{k}{a}$ ()
 - (b) $ag \frac{k}{a}$ ()
 - (c) $\frac{1}{a}g(ak)$ ()
 - (d) $g \frac{k}{a}$ ()

PHY/V/CC/09/126

8. For an odd function, the Fourier series can be expressed as

(a)
$$f(x) = a_0 = a_n \cos nx$$
 ()
(b) $f(x) = a_n \cos nx$ ()
(c) $f(x) = b_n \sin nx$ ()
(d) None of the above ()

9. If F(s) is the Laplace transform of f(t), then the Laplace transform of $t^2 f(t)$ is

(a)
$$\frac{dF}{ds}$$
 ()
(b) $\frac{d^2F}{ds^2}$ ()
(c) $\frac{d^2F}{ds^2}$ ()
(d) $s\frac{dF}{ds}$ ()

10.
$$L^{1} \frac{1}{(s \ 1)^{3}}$$
 is equal to
(a) $e^{t} \frac{t^{2}}{2!}$ ()
(b) $e^{t} \frac{t^{2}}{2!}$ ()
(c) $e^{t} \frac{t}{2!}$ ()
(d) $e^{2} \frac{t^{2}}{2!}$ ()

PHY/V/CC/09/126

SECTION—B

Write short answers to the following questions :

1. Show that $f(z) = z^2$, where z = x iy is analytic function and satisfies the Cauchy-Riemann conditions.

OR

2. Show that

 $\int_{C}^{\circ} \frac{dz}{z} = 0$, if *C* does not enclose the origin 2 *i*, if *C* encloses the origin

3. Show that the solution of the differential equation $(1 \ x^2)y \ 2xy \ 0$ is $y \ a \tan^{-1} x \ b$, where a and b are constants.

OR

- **4.** Show that the solution of the differential equation $y \quad 4y \quad 4b \quad 0$ is $y \quad a \sin 2x \quad b$, where a and b are constants.
- **5.** For the Bessel function $J_n(x)$, show that $J_n(x) = (1)^n J_n(x)$, $n = 0, 1, 2, \cdots$.

OR

- **6.** Prove that for the Legendre function $P_n(1) = 1$.
- **7.** If f(x) is an even function, then show that the Fourier series can be written as

$$f(x) \quad a_0 \quad a_n \cos nx \\ n \quad 1$$

OR

8. Find the infinite Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$.

PHY/V/CC/09/126

[Contd.

 $3 \times 5 = 15$

9. Show that Laplace transform of the function $(\sin at \ at \cos at)$ is $\frac{2as^2}{(s^2 \ a^2)^2}$.

OR

10. Using Laplace transform, solve the equation $x = {}^{2}x = 0$ with $x(0) = C_{1}$ and $x(0) = C_{2}$.

(PART : B—DESCRIPTIVE)

The figures in the margin indicate full marks for the questions

- **1.** (a) State and prove Cauchy's integral formula. 1+3=4
 - (b) Using Cauchy's integral formula, evaluate the following integrals : 3+3=6
 - (i) $\circ_C \frac{4}{z(z-1)(z-2)} dz$, where for circle C, |z| = 3/2(ii) $\circ_C \frac{2}{z(2-z)} dz$, where for circle C, |z| = 1

OR

- **2.** (a) Find the residue of $f(z) = \frac{z}{(z-1)(z-1)^2}$ at all the singularities. 3
 - (b) Use residue theorem to evaluate $\int_{0}^{2} \frac{d}{a \ b \cos}$; $a \ b \ 0$. Hence show that $\int_{0}^{2} \frac{d}{2 \ \cos} \frac{2}{\sqrt{3}}$. 6+1=7
- **3.** (a) Show that x = 0 is an irregular singular point and x = 2 is a regular singular point of the following differential equation : 2+2=4

$$x^{3}(x \quad 2)\frac{d^{2}y}{dx^{2}} \quad (x \quad 2)\frac{dy}{dx} \quad 3xy \quad 0$$

(b) Determine the series solution for the following differential equation about $x_0 = 0$: 6

y y 0

PHY/V/CC/09/126

OR

- **4.** (a) Show that the point of infinity is a regular singular point of the equation x^2y $(3x \ 1)y \ 3y \ 0.$ 4
 - (b) Solve the two-dimensional Laplace's equation in polar coordinates by the method of separation of variables.
- **5** (a) Show that when n is a positive integer, $J_n(x)$ is the coefficient of Z^n in the expansion of $e^{x(Z \frac{1}{Z})/2}$ in ascending and descending powers of Z. 4
 - (b) For Hermite polynomials $H_n(x)$, prove the following : 3+3=6(i) $2nH_{n-1}(x) = H_n(x)$ (ii) $2nH_n(x) = 2nH_{n-1}(x) = H_{n-1}(x)$

OR

- **6.** (a) Prove the following recurrence relations for Legendre polynomials : 4+4=8
 - (i) nP_n (2n 1) xP_{n-1} (n 1) P_{n-1} (ii) (2n 1) P_n P_{n-1} P_{n-1}
 - (b) Show that for the Bessel's function

7. (a) Find the Fourier series expansion of the periodic function of period 2 :

$$f(x) \quad x^2, \qquad x$$

Hence find the sum of the series $\frac{1}{1^2} = \frac{1}{2^2} = \frac{1}{3^2} = \frac{1}{4^2} = \frac{1}{4^$

(b) Find the infinite Fourier transform of f(x) defined by $f(x) = \begin{pmatrix} 1 & |x| & 1 \\ 0 & |x| & 1 \\ 0 & |x| & 1 \end{pmatrix}$

and hence show that
$$\int_{0}^{0} \frac{\sin x}{x} dx = \frac{1}{2}$$
. $2+2=4$

PHY/V/CC/09**/126**

OR

- 8. (a) Discuss the application of Fourier series in full-wave rectifier and hence show that the lowest frequency term of the Fourier series has a frequency twice the frequency of the source.
 - (b) Show that the finite cosine transform of $f(x) = \frac{1}{3} + x + \frac{x^2}{2}$ in the interval (0,) is $\frac{1}{n^2}$.
- 9. (a) Find the Laplace transforms of the following functions : $2 \times 3 = 6$ (i) $f(t) \quad \sqrt{t}$ (ii) $f(t) \quad t^2 \cos 2t$ (iii) $f(t) \quad e^{-4t} \frac{\sin 3t}{t}$
 - (b) Using Laplace transforms, find the solution of the differential equation : 4

 $y = 25y = 10\cos 5t$ with y(0) = 2, y(0) = 0

OR

- 10. (a) Using Laplace transform, show that—
 - (i) $t^2 e^{-t} \sin t dt = \frac{1}{2}$ (ii) $\frac{\sin t}{t} dt = \frac{1}{2}$ 2+2=4
 - (b) Applying Cauchy's residue theorem, show that $L^{1} \frac{a}{s^{2} a^{2}} = \sinh at$. 3
 - (c) Use convolution theorem to find the functions whose Laplace transform is $\frac{s^2}{(s^2 a^2)^2}$. 3

PHY/V/CC/09/126