2018

(CBCS)

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—II)

Full Marks: 75

Time: 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 10 = 10$

- **1.** The analytic function f(z) whose real part is $x^2 y^2$ is
 - $(a) z \qquad ()$

(c) z^2 ()

- (b) z^2 () (d) z^3 ()
- **2.** The value of the integral

$$I \quad \frac{1}{2} \circ_C \frac{dz}{z \quad 3}$$

where C is the circle |z| = 1 is

 $(a) \quad 0$) (b) 0·5 ()

(c) 1 ()

(d) 2 ()

3.	If a function of two variables is a solution of Laplace's equation, the function is said to be	ıen								
	(a) conjugate ()									
	(b) anharmonic ()									
	(c) harmonic ()									
	(d) analytic ()									
4.	For the linear differential equation $y = \frac{1}{x-1}y = \frac{x}{(x-1)^2}y = 0$									
	where $y = \frac{dy}{dx}$									
	(a) $x = 0$ is a singular point ()									
	(b) x 1 is a singular point ()									
	(c) x 1 is an ordinary point ()									
	(d) x 1 is a singular point ()									
5.	If the Legendre polynomial									
	$P_5(x)$ k x^5 $\frac{70}{63}x^3$ $\frac{15}{63}x$									
	then k is equal to									
	(a) $\frac{63}{2}$ (b) $\frac{21}{2}$ (c)									
	(c) $\frac{63}{5}$ (d) $\frac{63}{8}$ ()									
6.	The value of the integral $x J_0(x) dx$ is									
	(a) $x J_1(x) J_0(x)$ (b) $x J_1(x)$ (c)									
	(a) $x J_1(x) J_0(x)$ (b) $x J_1(x)$ (c) $J_1(x)$ (d) $x^2 J_n(x)$ (e)									
HY.	V/CC/09 /124 2	[(
,										

7.	The	Fourier	transform	of $\frac{df}{dt}$,	i.e.,	F	T	$\frac{df}{dt}$	is
----	-----	---------	-----------	----------------------	-------	---	---	-----------------	----

(a)
$$\frac{1}{\sqrt{2}}$$
 $f(t)e^{it}dt$ ()

(b)
$$\sqrt{\frac{1}{2}}$$
 $f(t)e^{it}dt$ ()

(c)
$$\frac{i}{\sqrt{2}}$$
 $f(t)e^{-i-t}dt$ ()

$$(d) \frac{1}{i\sqrt{2}} \qquad f(t)e^{it}dt \qquad ()$$

8. The Fourier series of a function
$$f(x)$$
 x x^2 is given by

(a)
$$\frac{2}{2}$$
 (b) $\frac{2}{2}$ (c)

(c)
$$\frac{2}{2}$$
 (d) $2\frac{2}{3}$ ()

9. If
$$f(s)$$
 is the Laplace transform of $F(t)$, then $\mathcal{L}^{1}[f(as)]$ is

(a)
$$\frac{1}{a}F \frac{t}{a}$$
 (b) $\frac{1}{a}F \frac{a}{t}$ (c)

(c)
$$aF \frac{t}{a}$$
 (d) $aF \frac{a}{t}$ (

10. Laplace transform of $t^{1/2}$ is

(a)
$$\frac{\sqrt{}}{s}$$
 (b) $\sqrt{\frac{}{s}}$ (c)

(c)
$$\frac{s}{\sqrt{}}$$
 (d) $\frac{1}{\sqrt{s}}$ (1)

SECTION—B

(Marks: 15)

Answer the following questions:

 $3 \times 5 = 15$

1. Test the analyticity of the function $f(z) = \frac{1}{z}$.

OR

- **2.** Prove that $u = x^2 y^2$ and $v = \frac{y}{x^2 y^2}$ are harmonic functions of (x, y), but are not harmonic conjugates.
- **3.** Explain the terms ordinary point and singular point of a second-order differential equation.

OR

- **4.** Show that u(x, t) $(A\cos x \ B\sin x)e^{-2h^2t}$ is the solution of one-dimensional heat flow equation $\frac{u}{t} h^2 \frac{^2u}{x^2}$, where A, B and are constants to be determined from boundary conditions.
- **5.** Prove that $H_{2n}(0)$ $(1)^n \frac{(2n)!}{n!}$, where $H_n(x)$ is Hermite polynomial.

OR

- **6.** Using Rodrigue's formula for Legendre's polynomials, show that ${}^{1}_{1}P_{0}(x)dx$ 2.
- **7.** If g() is the Fourier transform of f(t), then show that the Fourier transform of $f(t)\cos at$ is given by $\frac{1}{2}[g(-a)-g(-a)]$.

OR

8. If $f(x) = \frac{a_0}{2} = \int_{n=1}^{\infty} a_n \cos nx$ $\int_{n=1}^{\infty} b_n \sin nx$ be the Fourier series for the function

$$f(x) = \begin{cases} 0, & x & 0 \\ k, & 0 & x \end{cases}$$

then show that $b_n = \frac{k}{n} [1 \ (1)^n].$

9. Find the Laplace transform of sawtooth wave function

$$F(t)$$
 $\frac{at}{T}$ for 0 t T and $F(t$ $T)$ $F(t)$

OR

10. If f(s) is the Laplace transform of F(t), then show that $\mathcal{L}^{-1}[f(s-a)] = e^{at}F(t)$.

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

- **1.** (a) Derive the necessary conditions to be satisfied by the real and imaginary parts of a complex analytic function.
 - (b) Using Cauchy's residue theorem, show that

(c) Find the residue of $\frac{z}{(z-a)(z-b)}$ at infinity.

OR

2. (a) State and prove Cauchy's integral theorem.

1+2=3

- (b) Using Cauchy's integral theorem, integrate $\frac{z^2}{z^2} \frac{1}{1}$ along a circle of radius 1 with centre at (i) z = 1 and (ii) z = i. 2+2=4
- (c) Obtain the Taylor's expansion of the function $f(z) = \frac{2z^3}{z^2} = \frac{1}{z}$ about z = 1.
- **3.** (a) Obtain the power series solutions for the differential equation

$$(1 z^2) \frac{d^2 f}{dz^2} 2z \frac{df}{dz} 2f 0$$

about z=1.

(b) Write down the Laplace equation in two-dimensional Cartesian coordinates and solve it by the method of separation of variables.

4. (a) Solve the differential equation

$$\frac{2y}{t^2}$$
 $c^2 \frac{2y}{x^2}$

under the boundary conditions y(0, t) = 0; y(l, t) = 0; $y(x, 0) = a \sin \frac{x}{l}$ and $\frac{y(x, 0)}{t} = 0$.

- (b) Find the series solution of $(1 x^2)y xy y 0$ about x 0.
- **5.** (a) Show that $P_n(x)$ is coefficient of h^n in the expansion of $\begin{bmatrix} 1 & 2xh & h^2 \end{bmatrix}^{\frac{1}{2}}$ in ascending powers of h. Hence, show that (i) $P_n(1)$ 1 and (ii) $P_n(x)$ (1) $P_n(x)$.
 - (b) Using the expression

$$e^{x^2} (z \ x)^2$$
 $n \ 0 \frac{H_n(x)}{n!} z^n$

show that $H_n(x) = (1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2}).$

OR

6. (a) Using the expression

$$J_n(x) = \int_{r=0}^{r} \frac{(1)^r}{r! (n-r-1)} \frac{x}{2}^{n-2r}$$

prove the following relations:

(i) $2 J_n(x) \quad J_{n-1}(x) \quad J_{n-1}(x)$

(ii)
$$2nJ_n(x) = x\{J_{n-1}(x) = J_{n-1}(x)\}\$$

(b) Using the expansion of Bessel's functions, show that

(i)
$$J_n(x) = \frac{1}{0} \cos(n + x \sin t) dt$$

(ii)
$$J_0(x) = \frac{1}{0}\cos(x\sin t)dt$$

3+2=5

6

3

5

7. (a) Find the Fourier series expansion of the periodic function of period 2 defined as

$$f(x) = \begin{cases} k, & x & 0 \\ k, & 0 & x \end{cases}$$

Hence show that

$$\frac{1}{4}$$
 1 $\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}{7}$... 5+1=6

(b) Find the finite Fourier sine transform and cosine transform of f(x) x, 0 x 2.

OR

8. (a) Obtain the Fourier series for a function of

$$f(x) = \begin{array}{cccc} 0, & & x & 0 \\ x, & 0 & x \end{array}$$

Hence show that

(i)
$$\frac{1}{4}$$
 1 $\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}{7}$...
(ii) $\frac{2}{8}$ 1 $\frac{1}{3^2}$ $\frac{1}{5^2}$ $\frac{1}{7^2}$...

(b) If g(k) be the Fourier transform of f(x), then show that the Fourier transform of the *n*th derivative of f(x) is (ik)n g(k).

9. (a) If
$$\mathcal{L}[J_0(t)] = \frac{1}{\sqrt{s^2 + 1}}$$
, then show that $\int_0^t J_0(u) J_0(t + u) du = \sin t$.

(b) Find the inverse Laplace transform of

$$f(s) \quad \log \frac{s^2 - 1}{s^2}$$

(c) Find the Laplace transform of $F(t) = t^2 e^t \sin 4t$.

- **10.** (a) Using Laplace transform, show that $\int_0^\infty \cos x^2 dx = \frac{1}{2} \sqrt{\frac{1}{2}}$.
 - (b) Using convolution theorem, find the inverse Laplace transforms of $\frac{1}{s^2(s^2-2)}$.
 - (c) Find the Laplace transform of the function $F(t) = \frac{e^{at}}{a}$.

 $\star\star\star$