PHY/V/07 (R)

Student's Copy

2018

(Pre-CBCS)

(5th Semester)

PHYSICS

SEVENTH PAPER

(Classical Mechanics and Thermal Physics)

(Revised)

Full Marks: 55

Time : $2\frac{1}{2}$ hours

(PART : A—OBJECTIVE)

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION—A (Marks:5)

Tick (\checkmark) the correct answer in the brackets provided :

- 1. A body of mass m moving with velocity v is approaching another body of the same mass but at rest. The kinetic energy of the system of the two bodies as viewed from their center of mass is
 - (a) mv^2 () (b) $\frac{1}{2}mv^2$ () (c) $\frac{1}{4}mv^2$ () (d) $\frac{1}{8}mv^2$ ()

PHY/V/07 (R)/308

[Contd.

 $1 \times 5 = 5$

2. The average kinetic energy of one mole of an ideal gas at temperature *T* is

	(a)	$\frac{2}{3}kT$	()		(b)	$\frac{2}{3}R'$	r	()			
	(c)	$\frac{3}{2}kT$	()		(d)	$\frac{3}{2}R^{2}$	r	()			
3.	The for	coefficient	t of th	hermal	conductivi	ty at :	room	tempe	eratu	re is	the g	grea	test
	(a)	oxygen	()		(b)	heli	um	()			
	(c)	hydrogen		()		(d)	cart	oon die	oxide		()	
4.	4. For the canonical ensemble of a classical and c canonical partition function is given by						discr	rete	syste	em,	the		
	(a)	Z e i	E_1	()	(b)	Ζ	e^{E_1}	l	()		
	(c)	$Z e^{-\frac{1}{H}}$	$\overline{\Sigma_1}$	()	(d)	Ζ	$e^{\overline{E_1}}$		()		
5.	Whi	ich of the	follov	wing pa	articles do	not c	obey	B-E st	atist	ics?			
	(a)	Photons	(()		(b)	Prot	ons	()			
	(C)	Pions	()		(d)	Gas	molec	ules		()	
					SECTI	ION—	В						

(Marks: 15)

Answer the following questions :

- **1.** What is central force? Give at least two important properties of central force.
- **2.** Show that the number of molecules per unit volume of an ideal gas is given by

$$n \quad \frac{PN}{RT}$$

where the symbols have their usual meanings.

PHY/V/07 (R)/308

[Contd.

3×5=15

3. Prove the thermodynamic relation

$$TdS \quad C_V dT \quad T \quad \frac{P}{T} \quad _V dV$$

where the symbols have their usual meanings.

- 4. State and explain equal a priori probability.
- 5. Distinguish between bosons and fermions. Give three points at least.

(PART : B—DESCRIPTIVE)

(Marks : 35)

The figures in the margin indicate full marks for the questions

1.	(a)	When a particle moves under central force, prove that— (i) the angular momentum is conserved:							
		(ii) the areal velocity remains constant. 2-	2+2=4						
	(b)	State Kepler's third law of planetary motion. Deduce Newton's law of gravitation from Kepler's third law.	3						
	OR								
2.	(a)	Discuss the reduction of two-body problem to equivalent one-body problem.	4						
	(b) What do you understand by constraints and generalized coordinates? What are the constraints and generalized coordinates of a simple								
		pendulum?	3						
3.	Sta	te and explain Einstein's theory of translational Brownian motion.	7						
		OR							
4.	Exp	plain Stern's experiment for the experimental verification of							
	Maz	xwell-Boltzmann law of distribution of molecular velocities.	7						
5.	(a)	Explain transport phenomena in gases.	2						
	(b)	Explain the condition of equilibrium in di-component system using Gibbs phase rule.	5						

OR

6. What do you mean by 'thermodynamic potentials or functions'? Derive any

	two	Maxwell's thermodynamic relations from thermodynamic potentials.	-7					
		1+3+3-	-7					
7.	(a)	Derive the relation S $k \ln$ (E), where S = entropy and (E) thermodynamic probability.	4					
	(b)	Show that for thermodynamic equilibrium of any two systems in contact, the parameter of the two systems must be equal.	3					
OR								
8.	What do you mean by ensemble? Explain the three types of ensemble with neat diagrams.7							
9.	Using Fermi-Dirac distribution law, derive an expression for the energy distribution of free electrons in metal. Hence, explain Fermi energy and Fermi level. 4+3=7							
OR								
10.	(a)	Apply M-B energy distribution law to find internal energy and specific heat at constant volume of an ideal gas.	5					
	(b)	Show that at high temperature, both B-E and F-D statistics approach M-B statistics.	2					

* * *