2018

(Pre-CBCS)

(5th Semester)

PHYSICS

SIXTH PAPER

(Quantum Mechanics—II)

(Revised)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A (*Marks*: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. Conservation of probability in quantum mechanics is represented by the equation

(a) $- \stackrel{\rightarrow}{t} \stackrel{\rightarrow}{J} \stackrel{\rightarrow}{J} 0$	()	(b) $- \stackrel{\rightarrow}{t} \stackrel{\rightarrow}{J} \stackrel{\rightarrow}{J} 0$	()
$(c) - \underbrace{t} \stackrel{\rightarrow}{\longrightarrow} \stackrel{\overrightarrow{P}}{P} 0$	()	$(d) - \vec{t} \vec{P} 0$	()

2. Let be a wave function, the quantity represents
(a) probability density ()
(b) charge density ()
(c) energy density ()
(d) wave intensity ()

- **3.** Let E_3 be energy of the third energy level of a free particle in onedimensional infinite potential well. The relation between first energy level E_1 and third energy level E_3 is

/307

 $1 \times 10 = 10$

)

)

 4. For a free particle in step potent transmittance, then (a) R T 1 () (c) R T 1 () 	tial, let R and T be reflectance and (b) R T () (d) $R.T$ 1 ()
 (c) K I I () 5. The ground state energy of hydroge (a) -16.3 eV () (c) -1.36 eV () 	en atom is
 6. Which of the following is not permelectrons in an atom? (a) n 4, l 0, m 0, s 1/2 (b) n 5, l 3, m 0, s 1/2 (c) n 3, l 2, m 3, s 1/2 (d) n 3, l 2, m 2, s 1/2 	() () ()
7. Two kets $ a\rangle$ and $ b\rangle$ are orthonorm (a) $\langle b b\rangle$ 0, $\langle a b\rangle$ 0, $\langle a a\rangle$ 1 (b) $\langle b b\rangle$ 1, $\langle a b\rangle$ 0, $\langle a a\rangle$ 1 (c) $\langle b b\rangle$ 1, $\langle a b\rangle$ 1, $\langle a a\rangle$ 1 (d) $\langle b b\rangle$ 1, $\langle a b\rangle$ 0, $\langle a a\rangle$ 0	() () ()
8. The energy eigenvalue of a particle box $(a \ b \ c)$ is $(a) \ \frac{2\hbar^2}{2m} \ \frac{n_x}{a}^2 \ \frac{n_y}{b}^2 \ \frac{n_z}{c}^2$ $(b) \ \frac{\hbar^2}{2m} \ \frac{n_x}{a}^2 \ \frac{n_y}{b}^2 \ \frac{n_z}{c}^2$	le of mass <i>m</i> in three, dimensional () () ()
(c) $\frac{h^2}{2m} \frac{n_x}{a}^2 \frac{n_y}{b}^2 \frac{n_z}{c}^2$	()
(d) $\frac{2\hbar^2}{2m} \frac{n_x}{2a}^2 \frac{n_y}{2b}^2 \frac{n_z}{2c}^2$	()

PHY/V/06 (R)**/307**

[Contd.

9. For electron, the number of possible spin states for Z component is

	()	1 3		,	()	2 4		,
10.		comm 0	,	ion $[L_x, p_x]$ equals	(b)	iħ	()

SECTION—B (Marks: 15)

Write short answers to the following questions :

- 1. Explain complementary principles.
- **2.** Show that $[x, p_x^n]$ $ni\hbar p_x^n$, where x is position operator, p_x is x component of momentum operator.
- **3.** What are the three quantum numbers associated with wave functions of a hydrogen atom? Give their significances.
- **4.** Let $| \rangle |u_1\rangle |u_2\rangle |u_2\rangle |u_3\rangle$ and $| \rangle |u_1\rangle |u_2\rangle |u_3\rangle$. Compute the inner product $\langle | \rangle$.
- 5. Show that electron spin magnetic moment is equal to Bohr magneton.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

1. (a) Show that de Broglie wavelength for a material particle of rest mass m_0 and charge q accelerated from rest through a potential difference of V volts relativistically is given by

$$\frac{h}{\sqrt{2m_0qV \ 1 \quad \frac{qV}{2m_0qc^2}}}$$
5

(b) Show that material particle can only be represented by a group wave not by a single wave.

PHY/V/06 (R)/307

[Contd.

5

 $3 \times 5 = 15$

OR

- 2. (a) What is de Broglie hypothesis? Describe Davisson-Germer experiment for the study of electron diffraction. What are the results of the experiment? 1+6=7
 - (b) Write four basic postulates of Quantum mechanics. 3
- **3.** A beam of particles of mass m and energy E is incident from the left on a rectangular potential barrier of the form

where V_0 is the height and *a* is the thickness of the potential barrier. Discuss the solution for E V_0 and explain how tunnelling can be understood. Give two examples of quantum tunnelling. 9+1=10

OR

- **4.** (a) What do you mean by Hermitian operator? Show that eigenvalues of Hermitian operators are real. 1+4=5
 - (b) Show that if two Hermitian operators commute, their product is also Hermitian.5
- 5. Solve the radial equation

$$\frac{1}{r^2} - \frac{1}{r} r^2 - \frac{R}{r} = \frac{2mE}{\hbar^2} - \frac{2mV(r)}{\hbar^2} - \frac{l(l-1)}{r^2} R = 0$$

of the hydrogen atom, where the symbols have their usual meanings. Show that the energy values are exactly the same as those obtained by Bohr. 8+2=10

OR

- 6. Obtain the expression for energy eigenvalue of one-dimensional harmonic oscillator. What is zero point energy of harmonic oscillator? 8+2=10
- 7. (a) What are linear vector space and Hilbert space? 3
 - (b) Describe Gram-Schmidt orthonormalization process. Apply this process for a doubly degenerate system.
 4+3=7

PHY/V/06 (R)/307

4

[Contd.

8.	(a)	Consider the following two kets
		5 <i>i</i> 3
		$ $ \rangle 2 and $ $ \rangle 8 i
		i 9i
		(i) Find $ \rangle$ and $\langle $.
		(ii) Is $ $ \rangle normalized? If not, normalize it.
		(iii) Are the two kets orthogonal? 1+2+1=4
	(b)	Write down the addition and multiplication conditions to be satisfied
		by a vector space. 2
	(c)	Consider the state
		$egin{array}{c c} & & 3i v_1 angle & 7i v_2 angle \ & & v_1 angle & 2i v_2 angle \end{array}$
		where $ v_1 angle$ and $ v_2 angle$ are orthonormal vectors :
		(i) Calculate $ \rangle$ and $\langle $.
		(ii) Show that $\langle \rangle \langle \rangle$. $2+2=4$
9.	(a)	
		the components of angular momentum, i.e., $[L^2, L_x]$ 0. What is the
		physical meaning of the commutation? 5+1=6
	(b)	State Uhlenbeck and Goudsmit's hypothesis of electron spin. What are
		Pauli spin operators? 1+3=4

OR

 ${\bf 10.}$ The expression for square of angular momentum is given by

$$L^2 = \hbar^2 \frac{1}{\sin^2} - \sin^2 - \frac{1}{\sin^2} - \frac{2}{2}$$

Obtain the eigenvalue of L^2 .

* * *

PHY/V/06 (R)**/307**

G9—110

10