2018

(Pre-CBCS)

(5th Semester)

PHYSICS

FIFTH PAPER

(Mathematical Physics—I)

(Revised)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A (Marks: 10)

Tick (🗸) the	correct	answer	in	the	brackets	provided	
---------	-------	---------	--------	----	-----	----------	----------	--

1.	The	value	of (1)	is								
	(a)	0	()			(b)	1	()		
	(c)	1	()			(d)		()		
2.	The	value	of (1,	3) is								
	(a)	1/3	()		(b)	2/3		()		
	(c)	1/12		()		(d)	None	of	the	above	()

/306

 $1 \times 10 = 10$

3. If $z e^i$, then \cos is given by

(a) $\frac{1}{2i} z \frac{1}{z}$ () (b) $\frac{1}{2} z \frac{1}{z}$ () (d) $\frac{1}{2} z \frac{1}{z}$ () (c) $\frac{1}{2i} z \frac{1}{z}$ () **4.** The function $f(z) = \frac{e^z}{z^2 - 4}$ has (a) two simple poles at z = 2i and at z2i() (b) two simple poles at z = 2 and at z2 () (c) a simple pole at z = 2 and a pole of order 2 at z = 22 () (d) a simple pole at z = 2i and a pole of order 2 at z2i() **5.** If *H* is a Hermitian matrix, then e^{iH} is a/an (a) skew-Hermitian matrix () (b) unitary matrix () ((c) orthogonal matrix) (d) Hermitian matrix () **6.** The eigenvalues of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$ are *(b)* 4, 1 () () (d) 4, 1 7. The scale factors for a cylindrical coordinate system are (a) h_1 1, h_2 r, h_3 1 () (b) h_1 1, h_2 , h_3 1 () (c) h_1 1, h_2 r, h_3 r sin () (d) h_1 1, h_2 , h_3 sin () **8.** The number of components of the mixed tensor A_k^{ij} in a 4-dimensional space is

(a)	4	()	(b)	16	()
(C)	64	()	(d)	81	()

PHY/V/05 (R)/306

[Contd.

9. What are the values of *x* and *y* after executing the following C++ program segment?

int x 2, y3; х х *y*; y х y;х x y;(a) x 2, y 3() (b) x = 5, y3 () (c) x = 3, y2 () (d) None of the above ()

10. Which of the following is true about C++?

- It is a computer language based on
- (a) structured programming ()
- (b) object-oriented programming ()
- (c) procedural programming ()
- (d) sequential programming ()

SECTION-B

(*Marks* : 15)

Answer the following questions :

- **1.** Prove that (m, n) (n, m).
- **2.** Show that $f(z) = z^2$, where z = x iy is analytic function and satisfies the Cauchy-Riemann conditions.
- **3.** Show that every tensor of rank 2 can be expressed as the sum of symmetric and skew-symmetric tensors of same rank.
- 4. Prove that the eigenvalues of a Hermitian matrix are real.
- 5. Mention different forms of data types in C++ and their memory sizes.

PHY/V/05 (R)**/306**

3×5=15

[Contd.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

1. (a) Using the definition of -function, show that $(m, n) = \frac{(m) (n)}{(m n)}$. 4

(b) Show that
$$\frac{1}{0} \frac{x^2 dx}{\sqrt{1 x^4}} = \frac{1}{0} \frac{dx}{\sqrt{1 x^4}} = \frac{1}{4\sqrt{2}}.$$
 6
OR

2. (a) Prove that

$$(m, n) = \frac{x^{m-1}}{(1-x)^{m-n}} dx$$

Hence show that $0 \frac{x}{(1-x)^{24}} dx = 0.$ 3+2=5

(b) Show that
$$0^{\frac{2}{3}} \frac{d}{\sqrt{\sin}} 0^{\frac{2}{3}} \sqrt{\sin} d$$
 . 5

3. (a) State and prove Cauchy's integral theorem. 5
(b) Use Cauchy's integral theorem to evaluate
$$\circ_C \frac{dz}{z}$$
, where C is a simple closed curve. 5
OR

(b) Use Cauchy's residue theorem to show that

$$\frac{2}{0} \frac{\cos 3}{5} \frac{d}{4\cos 2} \frac{1}{12}$$
 5

4

PHY/V/05 (R)/306

[Contd.

5

OR

6.	(a)	Show that the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a	an	ortho	gon	al matri	x. Diagonalize the
		matrix.					2+2=4
				1	3	2	
	(b)	Find the inverse of the matrix .	Α	3	0	5.	6
				2	5	0	

- **7.** (a) Show that cylindrical coordinate system is orthogonal. 5
 - *(b)* Show that unit vectors in spherical polar coordinate system are related to unit vectors in Cartesian coordinate system as

ŕ	sin	COS	sin	sin	COS	i	
^	cos	cos	cos	sin	sin	\hat{j}	
^	sin		СС	os	0	\hat{k}	

OR

- **8.** (a) Show that (i) velocity is a contravariant vector and (ii) gradient of a scalar function is a covariant vector. 3+3=6
 - (b) Show that, if A^i and B^j are two contravariant vectors, then the n^2 quantities C^{ij} $A^i B^j$ are the components of a contravariant tensor of rank 2.
- **9.** (a) Mention with symbols, the arithmetic operators, logical operators, relational operators and assignment operators in C++.
 - (b) Write a C++ program to enter two numbers and then print their sum, square of sum and square root of the sum.

OR

- **10.** (*a*) With the help of appropriate flowchart diagram, describe how 'if', 'if else' and 'nested if' control statements are executed in C++ programs.
 - (b) Write a C++ program to read the length and breadth of a rectangle and print its area and perimeter. Take both length and breadth as float type data.

* * *

PHY/V/05 (R)**/306**

5

4

6

4

6

4