MATH/VI/09

Student's Copy

2018

(6th Semester)

MATHEMATICS

Paper : Math-361

(Modern Algebra)

Full Marks : 75 *Time* : 3 hours

(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

Answer **all** questions

SECTION—A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. A subgroup H of a group G is a normal subgroup of G if

(a) H is of index 1 in G ()

- (b) H is of index 2 in G ()
- (c) H is of index 3 in G ()
- (d) H is of index infinity in G ()

/502

[Contd.

- **2.** If the order of a group G with centre Z is p^n , where p is a prime number, then
 - (a) $Z \{e\}$ ()
 - (b) Z e ()
 - (c) $Z \{e\}$ ()
 - $(d) Z \qquad ()$

3. A skew field

- (a) is necessarily commutative ()
- (b) has no zero divisors ()
- (c) may not possess the unity element ()
- (d) has no invertible element ()
- **4.** The characteristic of the ring $(I_6, 6, 6)$ where $I_6 \{0, 1, 2, 3, 4, 5\}$ is
 - (a) 0 ()
 - *(b)* 3 *(*)
 - (c) 6 ()
 - (d) infinite ()

5. A non-zero integer has

- (a) no associates ()
- (b) exactly one associate ()
- (c) exactly two associates ()
- (d) infinite number of associates ()

MATH/VI/09**/502**

6. Let *a* and *b* be two elements of a Euclidean ring *R*. If *b* is a unit in *R*, then

- (a) d(ab) d(a) ()
- (b) d(ab) d(a) ()
- (c) d(ab) d(a) ()
- $(d) \ d(ab) \ d(b) \ ()$
- **7.** Which of the following is not a subspace of R^3 , where *R* is the set of all real numbers?

(a) $S \{(x, y, z) : x z 0\}$ () (b) $S \{(x, y, z) : x y 2z 0\}$ () (c) $S \{(x, y, z) : x 0\}$ () (d) $S \{(x, y, z) : x 3y R\}$ ()

8. The necessary and sufficient condition of a vector space V(F) to be a direct sum of its two subspaces U and W is

(a) V U W and U W O ()
(b) V UW and U W {0} ()
(c) V U W and U W {0} ()
(d) V U W and U W {0} ()

MATH/VI/09**/502**

[Contd.

9. If A and B are similar matrices, then

(a)	A	$I \mid B $	$I \mid$	()
(b)	A	I B	$I \mid$	()
(c)	A	I B	$I \mid$	()
(d)	A	$I \mid B $	<i>I</i>	()

10. An n matrix A over the field F is diagonalizable if and only if

(a) A has n linearly dependent eigenvectors ()

(b) A has n linearly independent eigenvectors ()

(c) A has n^2 linearly dependent eigenvectors ()

(d) A has n^2 linearly independent eigenvectors ()

SECTION-B

(Marks: 15)

Answer the following questions :

- **1.** Prove that a subgroup *H* of a group *G* is a normal subgroup of *G* if and only if the product of two right cosets of *H* in *G* is a right coset of *H* in *G*.
- **2.** Show that every ideal of a ring *R* is a subring of *R* but the converse is not necessarily true.
- **3.** Prove that any two non-zero elements of an integral domain with unity are associates if and only if they are divisors of each other.

MATH/VI/09/502

3×5=15

- **4.** Prove that every linearly independent subset of a finitely generated vector space V is either a basis of V or can be extended to form a basis of V.
- **5.** Prove that two eigenvectors of a square matrix A over a field F corresponding to two distinct eigenvalues of A are linearly independent.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions Answer **five** questions, taking **one** from each Unit

UNIT—1

- **1.** (a) If H is a normal subgroup of G and K be a normal subgroup of G containing H, then prove that $\frac{G}{K} = \frac{G/H}{K/H}$.
 - (b) Let f be an isomorphic mapping of a group G into a group G. Show that the order of an element of G is equal to the order of its image.
- **2.** State the fundamental theorem on homomorphism of groups. Prove that the set of all inner automorphisms of a group *G* is a normal subgroup of the group of its automorphisms and is isomorphic to the quotient group G/Z, where *Z* is the center of *G*. 2+8=10

UNIT-2

- **3.** (a) Prove that a finite commutative ring without zero divisors is a field. 5
 - (b) Show that a commutative ring with unity is a field if it has no proper ideal.

MATH/VI/09/502

[Contd.

4.	(a)	Prove that in a commutative ring R , an ideal S of R is prime if and only if the factor ring R/S is an integral domain.	5
	(b)	Prove that the ring of integers is a principal ideal domain.	5
		Unit—3	
5.	(a)	Let <i>R</i> be a Euclidean ring and <i>a</i> and <i>b</i> be any two elements in <i>T</i> , not both of which are zero. Then prove that <i>a</i> and <i>b</i> have a greatest common divisor <i>d</i> which can be expressed in the form $d = a$, <i>b</i> , for some , <i>R</i> .	7
	(b)	Show that every field is a Euclidean ring.	3
6.	(a)	Prove that an ideal S of a Euclidean ring R is maximal if and only if S is generated by some prime element of R .	6
	(b)	Prove that the necessary and sufficient conditions for a non-zero element a in the Euclidean ring R to be a unit is that $d(a) = d(1)$.	4
		Unit—4	
7.	(a)	If U and V are two subspaces of a finite dimensional vector space $V(F)$, then prove that dim $(U \ V)$ dim U dim V dim $(U \ V)$.	7

- (b) Show that the vectors (1, 2, 0), (0, 3, 1), (1, 0, 1) form a basis for \mathbb{R}^3 .
- 8. (a) Let U be a finite dimensional vector space over the field F and let $B \{ 1, 2, \dots, n\}$ be an ordered basis for U. Let V be a vector space over the same field F and let $1, 2, \dots, n$ be any n vectors in V. Then show that there exists a unique linear transformation T from U into Vsuch that T(i) i, i 1, 2,..., n.
 - (b) Show that if two vectors are linearly independent, then one of them is a scalar multiple of the other.

6

7

3

7

3

UNIT-5

9. (a) Let V and W be vector spaces over the same field F and let T be a linear transformation from V into W. If V is finite dimensional, then prove that

rank (T) nullity (T) dim V
$$6$$

(b) Let $T: R^4$ R^3 be a linear transformation defined by

$$T(x, y, z, t)$$
 $(x \ y \ z \ t, x \ 2z \ t, x \ y \ 3z \ 3t)$

10. (a) Diagonalize the matrix

(b) Show that the function $T: R^2 = R^2$ defined by T(x, y) (1 x, y) is a linear transformation. 3

* * *

MATH/VI/09/502