MATH/VI/CC/12b

Student's Copy

2019

(CBCS)

(6th Semester)

MATHEMATICS

TWELFTH (B) PAPER

(Elementary Number Theory)

Full Marks : 75 *Time* : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

SECTION-A

(Marks: 10)

Answer **all** questions

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

1. If (a, 4) = 2 and (b, 4) = 2, then (a = b, 4) = (a) = 1(a) 1 = 1(b) 4 = 1(c) 6 = 1(d) 8 = 1

/649

2. The square of any integer of the form 5k 1 is of the form

- (a) $5k \ 1 \square$
- (b) 5k 🗌
- (c) $5k \ 1$
- (d) $5(k \ 1)$
- **3.** Choose the odd one out.
 - (a) a $b \pmod{m}$ \Box (b) b $a \pmod{m}$ \Box
 - (c) $a \ b \ 0 \pmod{m}$
 - (d) $a \mod b$
- **4.** The complete residue system modulo 17 composed entirely of multiples of 3 is

	(a)	{18	3, 36, 21,	39, 24, 42,	27, 45, 30,	48, 33}					
	(b)	$\{0, 3, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36\}$									
	(c)	{0, 18, 36, 3, 21, 39, 6, 24, 42, 9, 27, 45, 12, 30, 48, 15, 33}									
	(d)	{18, 36, 3, 21, 39, 6, 24, 42, 9, 27, 45, 12, 30, 48, 15, 33, 51}									
5.	Let	et p be a prime, then x^2 1 (mod p) has a solution if and only						' if			
	(a)	р	2 or <i>p</i>	2 (mod 4)							
	(b)	р	4 or <i>p</i>	4 (mod 4)							
	(c)	р	4 or <i>p</i>	2 (mod 4)							
	(d)	р	2 or <i>p</i>	1 (mod 4)							
6.	If p	is a	prime su	ich that <i>p</i> doe	s not divide	a, where a is	s an integer, th	nen			
	(a)	$a^{p-1} \pmod{p} \qquad \Box$									

- (b) $a^p \pmod{p}$ (mod p)
- (c) $a^{p-1} a \pmod{p}$ \Box
- (d) $a^p p \pmod{a}$ (mod a)

MATH/VI/CC/12b**/649**

7. The congruence $f(x) \pmod{p}$ of degree *n* has at most

- (a) n 1 solutions
- (b) n solutions
- (c) n 1 solutions
- (d) n^2 solutions

8. If p denotes an odd prime and (a, p) 1, then the Legendre symbol $\frac{a}{p}$ is

- (a) 1 if a is a quadratic non-residue modulo p and -1 if a is a quadratic residue \Box
- (b) 0 if a is a quadratic residue and 1 if a is a quadratic non-residue modulo p
- (c) 1 if a is a quadratic residue and -1 if a is a quadratic non-residue modulo p
- (d) 0 if a is a quadratic non-residue modulo p and 1 if a is a quadratic residue \Box
- **9.** If (n) is odd, then n is of the form
 - (a) k^2 or k^3
 - (b) k^2 or $2k^2$
 - (c) k or 2k
 - (d) $k \text{ or } 2k^2$
- **10.** An arithmetic function f(n) not identically zero is said to be multiplicative if for every pair of positive integers m and n
 - (a) f(mn) = f(m)f(n) and (m, n) = 1
 - (b) $f(mn) \quad f(nm) \text{ and } (m, n) \quad 1$
 - (c) $f(mn) \quad f(m)f(n)$ and $(m, n) \quad 1$
 - (d) f(mn) = f(m)f(n) and (m, n) = 1

MATH/VI/CC/12b**/649**

SECTION-B

(Marks: 15)

Each question carries 3 marks

1. (a) Using Euclidean algorithm, find the GCD of 7468 and 2464.

OR

- (b) Prove that if (a, b) = 1 and (b, c) = 1, then (ac, b) = 1.
- **2.** (a) Prove that the number of primes is infinite.

OR

- (b) If $a \ b \pmod{m}$, $a \ b \pmod{m}$ and $(m, n) \ 1$, then show that $a \ b \pmod{mn}$.
- **3.** (a) Show that (mn) n (m) if every prime that divides n also divides m.

OR

- (b) Find the number of positive integers 3600 that are prime to 3600.
- **4.** (a) Solve $295x = 5 \pmod{11}$.

OR

- (b) If q + 4p = 1, where p is an odd prime, then show that 2 is a primitive root of q.
- **5.** (a) Find the value of (2520).

OR

(b) Solve $5x \ 3y \ 52$.

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

1. (a) If g is the greatest common divisor of the integers a and b, then prove that there exist integers x_0 and y_0 such that $g_0(a, b) = ax_0 = by_0$. Using Euclidean algorithm, find the least values of x_0 and y_0 such that $71x_0 = 50y_0 = 1$. 5+2=7

MATH/VI/CC/12b**/649**

- (b) Show that 4 does not divide n^2 4, where n is odd integer. 3
- **2.** (a) State and prove the fundamental theorem of arithmetic. 1+6=7
 - (b) Show that if p is prime and p / ab, then p / a or p / b, where a and b are any two integers.

- **3.** (a) Prove that there are arbitrary large gaps in the series of primes, that is, given any positive integer k, there exists k consecutive composite integers.
 - (b) Prove that $ax \quad ay \pmod{m}$ if and only if $x \quad y \mod \frac{m}{(a, m)}$. 5
- **4.** (a) If p is a prime, prove that $(a \ b)^m \ a^m \ b^m \pmod{m}$. 5
 - (b) Find the smallest value of $|36^m \ 5^n|$, where m and n are positive integers. 5

UNIT—III

5.	(a)	If p is	a prime, then	prove that (p	1)!	1 (mod <i>p</i>).	5
	(h)	If $n = 1$	prove that (n n $(1 -$	$\frac{1}{wh}$	ere is the product over	

- (b) If n = 1, prove that (n) $n = p/n = 1 = \frac{1}{p}$, where p/n is the product over all primes that divide n. 5
- **6.** (a) If (a, m) 1, then prove that $a^{(m)} 1 \pmod{m}$, where is Euler's -function. 5
 - (b) If a positive integer n has k distinct odd prime factors, prove that 2^{k} (n).

UNIT-IV

7. (a) Using Chinese remainder theorem, solve

MATH/VI/CC/12b**/649**

[Contd.

5

4

5

(b) If p and q are distinct odd primes, then prove that

$$\frac{p}{q} \quad \frac{q}{p} \quad (1) \quad \frac{p}{2} \quad \frac{q}{2}$$

where $\frac{p}{q}$ is a Legendre symbol.

8. (a) State and prove Gauss' lemma. 1+5=6

(b) If p is a prime and (a, p) 1, then prove that x^n $a \pmod{p}$ has (n, p 1)solutions or no solution according as $a^{\frac{p-1}{(n, p-1)}} 1 \pmod{p}$ or $a^{\frac{p-1}{(n, p-1)}} 1 \pmod{p}$.

9. Find all the Pythagorean triples (x, y, z) in $x^2 y^2 z^2$ whose terms form *(a)* an arithmetic progression and *(b)* a geometric progression. 5+5=10

10. (a) State and prove Möbius Inversion theorem. 1+5=6

(b) Prove that
$$k(n) = n^{-k} k(n)$$
.

* * *

 $\rm MATH/VI/CC/12b \textbf{/649}$

6

4