MATH/VI/CC/10

Student's Copy

2019

(CBCS)

(6th Semester)

MATHEMATICS

TENTH PAPER

(Advanced Calculus)

Full Marks : 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks : 25)

SECTION—A

(*Marks*: 10) Answer **all** questions *Each question carries 1 mark*

Put a Tick \boxdot mark against the correct alternative in the box provided :

1. P_1 is a refinement of P_2 , if and only if

	(a) P ₂	P_1								
	<i>(b) P</i> ₂	P_1								
	(c) P ₁	P_2								
(d) None of the above \Box										
2.	If $f(x)$	0, wi 1, wi	hen <i>x</i> hen <i>x</i>	\mathbb{N} \mathbb{R}	\mathbb{N}	and	g (x)	$\frac{1}{x}$, for	or all <i>x</i>	[0, 1], then
	(a) f	R, g	R							
	(b) f	<i>R</i> , <i>g</i>	R							
	(c) f	R, g	R							
	(d) f	<i>R</i> , <i>g</i>	R							

/646

3. If $\int_{a}^{a} f(x) dx$ converge conditionally, then (a) both a f dx and a |f| dx converge (b) both a f dx and a | f | dx diverge a f dx diverges and a |f| dx converges (C) $\int_{a} f dx$ converges and $\int_{a} |f| dx$ diverges (d) **4.** The integral $\int_0^x e^{n-1}e^{-x} dx$ is (a) convergent when n = 1 and divergent when n = 1 \square (b) convergent when n = 1 and divergent when n1 convergent when n = 0 and divergent when n = 0(c)(d) convergent when n = 0 and divergent when n = 0 \square **5.** If the function f(x, y) and $f_n(x, y)$ exist and continuous in [a, b; c, d], then (a) derivative of $\int_{a}^{b} f(x, y) dx$ with respect to y is not possible to determine (b) derivative of $\int_{a}^{b} f(x, y) dx$ with respect to y is always possible to determine of $\int_{a}^{b} f(x, y) dx$ with respect to y is not derivative (C) always continuous (d) None of the above MATH/VI/CC/10/646 2 [Contd. **6.** Consider the following Assertion (A) and Reason (R) :

<u> </u> . ntiate							
Both (A) and (R) are right \Box							
l) (A) is wrong and (R) is right \Box							

MATH/VI/CC/10**/646**

SECTION-B

(Marks: 15)

Each question carries 3 marks

1. Explain briefly the Riemann integrability of the function

0, when
$$x (\frac{1}{2}, 1]$$

 $f(x) = \frac{1}{2}$, when $x (\frac{1}{4}, \frac{1}{2}]$
1, otherwise

OR

Show that a constant function is Riemann integrable.

2. Show that
$$\int_{1}^{1} \frac{\sin x}{x^4} dx$$
 is absolutely convergent.

OR

Prove that $\int_{0}^{ax} \frac{e^{-bx}}{x} dx = \log \frac{b}{a}$, where a and b are constants.

3. Test the uniform convergence of improper integral $\int_0^0 e^{-x^2} \sin(xy) dx$ in the interval (,).

OR

Write the statement of Weierstrass *M*-test for uniform convergence of improper integral of $\int_{a}^{b} f(x, y) dx$ type.

4. Calculate $A = \frac{\sin x}{x} dA$, where A is the region in the XY-plane bounded by y = x and x = x.

OR

Prove that
$$\int_{0}^{\sin x} y \, dy \, dx = \frac{1}{2}$$

5. Write the necessary and sufficient condition of uniform convergence for sequential series.

OR

Show that the sequence $\{\sin(nx \ n) / n\}$ for any real number x and natural number n is convergent to zero.

MATH/VI/CC/10**/646**

[Contd.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions Answer **one** question from each Unit

1. (a) If f:[0, 1] = [0, 1] defined by

$$f(x) = \frac{2^{k}}{2^{k}} = x = \frac{2^{k-1}}{2^{k-1}}, \frac{2^{k}}{2^{k}}, k = 1$$

prove that *f* is Riemann integrable and $\int_{0}^{1} f(x) dx = \frac{2}{3}$.

- (b) A bounded function f is defined as
 - $f(x) = \frac{p}{q}$, if x is any non-zero rational $\frac{p}{q}$ in its lowest term 0, if x is irrational or zero

Show that f is R-integrable in [0, 1] and the value of the integral is zero. 4

2. (a) Let g [a, b] and let f be monotonic and non-negative on [a, b]. Then for some and of [a, b], prove that

$$\int_{a}^{b} f(x)g(x)dx \quad f(a) \quad g(x)dx \quad or \quad \int_{a}^{b} f(x)g(x)dx \quad f(a) \quad g(x)dx \quad g(x)dx \quad f(a) \quad g(x)dx \quad g$$

(b) Show that the function f defined as

$$f(x) = \frac{1}{2^n}$$
, when $\frac{1}{2^{n-1}} = x = \frac{1}{2^n}$
0, when $x = 0$

is *R*-integrable on [0, 1], although it has an infinite number of points of discontinuity.

3. (a) Evaluate $\int_{1}^{1} \frac{\cos ax \cos bx}{x} dx$.

(b) Discuss the convergence of $\int_{1}^{1} x^{n-1}e^{-x} dx$.

MATH/VI/CC/10**/646**

[Contd.

4

3

7

6

4. (a) If is bounded and monotonic in [a,] and a f dx convergent at , then prove that a f dx is convergent at . 6

(b) Show that the integral
$$\int_{0}^{0} \frac{\sin x}{x} dx$$
 converges. 4

5. (a) If a = b, then show that

$$\frac{\overline{2}}{0} \log \frac{a \quad b \sin}{1 \quad b \sin} \frac{d}{\sin} \quad \sin^{-1} \frac{b}{a}$$

(b) If
$$a = 0, |b| = a$$
, evaluate

$$0 \frac{dx}{a - b \cos x}$$
and deduce that
$$0 \frac{dx}{(a - b \cos x)^2} = \frac{a}{(a^2 - b^2)^{3/2}}$$
Also find
$$\frac{\cos x \, dx}{0 (a - b \cos x)^3}$$
6

6. Let f, f_y be continuous in [a, b; c, d] and let g_1 , g_2 be two functions derivable in [c, d] such that for all y [c, d] the points $(g_1(y), y)$ and $(g_2(y), y)$ belong to the [a, b; c, d]. Then prove that

(y)
$$\begin{array}{c} g_2(y)\\ g_1(y) \end{array} f(x, y) dx \text{ is derivable in } [c, d] \text{ for all } y \quad [c, d] \end{array}$$

and (y) $\begin{array}{c} g_2(y)\\ g_1(y) \end{array} f_y(x, y) dx \quad g_1(y) f(g_1(y), y) \quad g_2(y) f(g_2(y), y) \end{array}$ 10

UNIT—IV

7. (a) Discuss the integrability of bounded function over rectangle.5(b) Evaluate
$$_{R}(x \ y) dxdy$$
 over the rectangle R $[a, b; c, d]$.5

MATH/VI/CC/10**/646**

[Contd.

8. (a) Prove that $\frac{1}{0} \frac{1}{0} \frac{x}{(x + y)^3} \frac{y}{(x + y)^3} \frac{dy}{dx} = \frac{1}{2}$. Also prove that the value becomes $\frac{1}{2}$, if we interchange dx and dy.

(b) Change the order of integration $\begin{array}{c} 2\sqrt{7} & \sqrt{7} \\ 0 & 0 \end{array} \sin x^2 \, dy \, dx$ and evaluate it. 4

UNIT-V

- **9.** (a) Show that the sequence $\{f_n\}$, $f_n(x)$ nxe nx^2 is pointwise but not uniformly convergent in [0,]. 7
 - (b) Show that the series, $\cos x \quad \frac{\cos 2x}{2^2} \quad \frac{\cos 3x}{3^2} \quad \cdots$, converges uniformly on \mathbb{R} .
- **10.** State and prove Cauchy's criterion of uniform convergence of a sequence $\{f_n\}$ of a real-valued function on a set *E*. 2+8=10

* * *