MATH/VI/CC/09

Student's Copy

2019

(CBCS)

(6th Semester)

MATHEMATICS

NINTH PAPER

(Modern Algebra)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

Answer **all** questions

SECTION-A

(Marks: 10)

Each question carries 1 mark

Put a Tick \boxdot mark against the correct answer in the box provided :

- **1.** If *G* is a non-Abelian group of order p^3 , where *p* is prime, then the order of the center *Z* of *G* is
 - (a) 1 \Box (b) p \Box (c) p^2 \Box (d) p^3 \Box
- **2.** A subgroup H of a group G is normal, if it is of index
 - (a) 0 \Box (b) 1 \Box

 (c) 2 \Box (d) 3 \Box

/645

[Contd.

3. Which of the following is not an integral domain?	
(a) The ring of integers \Box	
(b) The ring of all 2 2 matrices with elements as integers \Box	
(c) $(\{0, 1, 2, 3, 4\}, 5, 5)$	
(d) The ring of all real numbers \Box	
4. The ring of Gaussian integers is not	
(a) commutative with respect to addition \Box	
(b) commutative with respect to multiplication \Box	
(c) a field \Box	
(d) an integral domain \Box	
5. Let a and b be two non-zero elements in a Euclidean ring R , then b is a	a non-unit
in R, if	
(a) $d(ab)$ $d(a)$ \Box (b) $d(ab)$ $d(a)$ \Box	
(c) $d(ab)$ $d(a)$ \Box (d) $d(ab)$ $d(ba)$ \Box	
6. In the quadratic ring of integers $Z[i\sqrt{5}] \{a \ i\sqrt{5}b; a, b \ Z\}$, the number of integers $Z[i\sqrt{5}] \{a \ i\sqrt{5}b; a, b \ Z\}$, the number of integers $Z[i\sqrt{5}] \{a \ i\sqrt{5}b; a, b \ Z\}$.	ber 3 is
(a) irreducible but not prime \Box	
(b) prime but not irreducible \Box	
(c) irreducible and prime \Box	
(d) neither irreducible nor prime \Box	
7. Which of the following set of vectors is linearly dependent?	
. which of the following set of vectors is inearly dependent:	
(a) $\{(2, 1, 4), (1, 1, 2), (3, 1, 2)\}$	
(a) $\{(2, 1, 4), (1, 1, 2), (3, 1, 2)\}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(a) $\{(2, 1, 4), (1, 1, 2), (3, 1, 2)\}$ \Box (b) $\{(1, 2, 1), (3, 0, 1), (5, 4, 3)\}$ \Box (c) $\{(1, 2, 0), (0, 3, 1), (1, 0, 1)\}$ \Box (d) $\{(2, 3, 1), (3, 1, 5), (1, 4, 3)\}$ \Box	re disioint
(a) $\{(2, 1, 4), (1, 1, 2), (3, 1, 2)\}$ \Box (b) $\{(1, 2, 1), (3, 0, 1), (5, 4, 3)\}$ \Box (c) $\{(1, 2, 0), (0, 3, 1), (1, 0, 1)\}$ \Box (d) $\{(2, 3, 1), (3, 1, 5), (1, 4, 3)\}$ \Box 8. If $V(F)$ is a vector space with zero element 0 and if U and W as	re disjoint
(a) $\{(2, 1, 4), (1, 1, 2), (3, 1, 2)\}$ \Box (b) $\{(1, 2, 1), (3, 0, 1), (5, 4, 3)\}$ \Box (c) $\{(1, 2, 0), (0, 3, 1), (1, 0, 1)\}$ \Box (d) $\{(2, 3, 1), (3, 1, 5), (1, 4, 3)\}$ \Box	re disjoint

MATH/VI/CC/09**/645**

2

[Contd.

9. Let $T: \mathbb{R}^3 = \mathbb{R}^3$ be a linear transformation whose nullity is 2. Then the rank of *T* is

 (a) 0
 \Box (b) 1
 \Box

 (c) 2
 \Box (d) 3
 \Box

10. Which of the following functions is a linear transformation from R^2 into R^2 ?

(a)	f(x, y)	$(x^2, y), (x, y) R^2$	
(b)	f(x, y)	$(\sin x, y), (x, y) R^2$	
(C)	f(x, y)	$(1 x, y), (x, y) R^2$	
(d)	f(x, y)	$(x \ y, 0), \ (x, y) \ R^2$	

SECTION-B

(Marks: 15)

Each question carries 3 marks

Answer the following questions :

1. (a) If the order of a group G is p^2 , where p is a prime number, then prove that G is Abelian.

OR

- (b) Show that every quotient group of an Abelian group is Abelian and the converse is not necessarily true.
- 2. (a) Prove that every field is an integral domain.

OR

- (b) Show that the set of all rational numbers is a subring but not an ideal of the ring of all real numbers.
- **3.** (a) Let f be a homomorphism of a ring R into a ring R. Show that the kernel of f is an ideal of R.

OR

(b) Prove that the necessary and sufficient condition for a non-zero element a in a Euclidean ring to be a unit is that d(a) = d(1).

MATH/VI/CC/09**/645**

- **4.** (a) Show that the set $W \{(x, y, z) \mid x \mid 3y \mid 4z \mid 0\}$ is a subspace of \mathbb{R}^3 . **OR**
 - (b) Show that the vectors $\{(2, 3, 1), (3, 1, 5), (1, 4, 3)\}$ forms a basis for \mathbb{R}^3 .
- **5.** (a) Let $T: \mathbb{R}^2 = \mathbb{R}^2$ be a linear operator defined by T(x, y) = (4x 2y, 2x y). Determine the matrix T with respect to the ordered basis {(1, 1), (-1, 0)}.

OR

(b) Let $T: \mathbb{R}^3 \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) (x y, y z). Find the kernel of T.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT—I

 (a) State the fundamental theorem on homomorphism of groups. Hence if G is a group and H is any subgroup of G and if N is any normal subgroup of G, then prove that

$$\frac{HN}{N} \quad \frac{H}{H \quad N} \qquad 1+6=7$$

- (b) Prove that a subgroup H of a group G is a normal subgroup of G if and only if each left coset of H in G is a right coset of H in G.
- **2.** (*a*) Prove that the set I(G) of all inner automorphisms of a group *G* is a normal subgroup of the group A(G) of all automorphisms of *G*. Also prove that I(G) is isomorphic to the quotient group G / Z of *G*, where *Z* is the center of *G*.
 - (b) Show that for an Abelian group, the only inner automorphism is the identity mapping but for non-Abelian groups, there exist non-trivial automorphisms.

MATH/VI/CC/09**/645**

3

7

3

UNIT—II

3.	(a)	Prove that a ring R is without zero divisors, if and only if the cancellation laws hold in R .	4
	(b)	Prove that the ring of integers is a principal ideal domain.	6
4.	(a)	Prove that an ideal S of a commutative ring R with unity is maximal, if and only if the residue class R/S is a field.	6
	(b)	Prove that a commutative ring with unity is a field if it has no proper ideal.	4
		UNIT—III	
5.	(a)	Let a and b be any two elements of a Euclidean ring R , not both of which are zero. Prove that a and b have a greatest common divisor d which can be expressed in the form	
		d a b for some, R	6
	(b)	Let <i>D</i> be an integral domain with unity element 1. Show that two non-zero elements a , b <i>D</i> are associates, if and only if a / b and b / a .	4
6.	(a)	Let <i>R</i> be a Euclidean domain and <i>a</i> be a non-zero non-unit element in <i>R</i> . If $a p_1p_2\cdots p_3 q_1q_2\cdots q_n$, where <i>p</i> s and <i>q</i> s are prime elements of <i>R</i> , then show that <i>m n</i> and each <i>p</i> is an associate of some <i>q</i> and each <i>q</i> is an associate of some <i>p</i> .	6
	(b)	Define a unique factorization domain. Show that the greatest common divisor of two elements of a unique factorization domain is unique up to associates.	4
		UNIT—IV	
7.	(a)	Prove that every linearly independent subset of a finitely generated vector space $V(F)$ is either a basis of V or can be extended to form a basis of V .	6
	(b)	Prove that the union of two subspaces is a subspace if and only if one	

is contained in the other.

4

5

- **8.** (a) If U and W are two subspaces of a finite dimensional vector space V(F), then prove that dim $(U \ W)$ dimU dimW dim $(U \ W)$.
 - (b) If V(F) is a finitely generated vector space of dimension n, then show that any set of n linearly independent vectors in V forms a basis of V.

UNIT-V

- **9.** (a) Let U be a finite dimensional vector space over the field F and let $B \{ 1, 2, \dots, n \}$ be an ordered basis for U. Let V be a vector space over the same field F and let $1, 2, \dots, n$ be any n vectors in V. Then prove that there exists a unique linear transformation T from U into V such that T(i) = i, i = 1 to n.
 - (b) Let $T: \mathbb{R}^3 = \mathbb{R}^3$ be a linear transformation defined by

$$T(x, y, z) \quad (x \quad 2y \quad z, y \quad z, x \quad y \quad 2z)$$

Find the range space, null space, rank of *T* and nullity of *T*.

- 10. (a) Let V and W be vector spaces over the same field F and let T be a linear transformation from V into W. If V is finite dimensional, then prove that rank T + nullity T = dim V.
 - (b) Let U be a finite dimensional vector space of dimension n over the field F and V be a finite dimensional vector space of dimension m over the same field F. Then prove that the vector space L(U, V) of all linear transformations from U into V is also finite dimensional and is of dimension mn.

* * *

6

4

7

3

6

5

5