2018

(CBCS)

(5th Semester)

MATHEMATICS

EIGHTH (C) PAPER [MATH-354 (C)]

(Computer Programming in FORTRAN)

Full Marks : 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 23)

The figures in the margin indicate full marks for the questions

SECTION-A

(*Marks* : 8)

Each question carries 1 mark

Tick $\ensuremath{\boxtimes}$ the correct answer in the box provided :

1. Which one is the correct integer constant?

- *(a)* 994–1
- (b) 78455
- (c) 12345
- (d) 23.001

/137

[Contd.

1×8=8

2. A step-by-step procedure to solve a problem is called

 \square

 \square

- (a) flowchart
- (b) algorithm \Box
- (c) array
- (d) loop
- **3.** MOD (180, 3) is equal to
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
- **4.** A program which will read two-dimensional array B with array of 10 rows and 20 columns in row-wise is

 \square

 \square

 \square

 \square

- (a) READ(*, *)((B(I, J), J=1, 20), I=1, 10)
- (b) READ(*, *)((B(I, J), I=1, 10), J=1, 20)
- (c) READ(*, *)((B(I, J), J=1, 10), I=1, 20)
- (d) READ(*, *)((B(I, J), I=1, 20), J=1, 10)

5. The correct form of arithmetic IF statement is

- (a) IF(n1, n2, n3, ..., nm), i
- (b) IF(J), 10, 20, 30
- *(c)* IF(D*J) 11, 22, 33 □
- (d) IF(I*K) 11, 22, 33

6. The general form of computed GOTO statement is

- (a) GOTO n
- (b) GOTO(n1, n2, n3, ..., nm)i
- (c) GOTO(n1, n2, n3, ..., nm), i
- (d) GOTO i, (n1, n2, n3, ..., nm)

7. Choose the invalid FORTRAN statement.

- (a) IF(N.LT.0)Y=2.3
- (b) DO 10 J=1.13
- (c) IF (D) 11, 22, 33
- (d) WRITE(*,*) "123=X"

MATH/V/CC/08 (c)**/137**

[Contd.

8. Which one is valid DIMENSION statement?

- (a) DIMENSION A(I,J) \Box
- (b) DIMENSION, A(10,10), B(6) \Box
- (c) DIMENSION A(20), C(10) \Box
- (d) DIMENSION A(10,10), B(6)

SECTION-B

(Marks: 15)

Each question carries 3 marks

Answer any five questions

- **1.** Translate the following FORTRAN arithmetic expressions into mathematical expressions :
 - (a) SQRT (SIN ((1.+X**2)**2)+1.)
 - *(b)* A*3+B**3+C**3+3.*A*B*-3
- **2.** Write a program to find the distance between two points (x_1, y_1) and (x_2, y_2) .
- **3.** Write one 'computed GOTO' statement to replace the following logical IF statements :
 - IF (K.EQ.1) GOTO 55 IF (K.EQ.2) GOTO 7 IF (K.EQ.3) GOTO 85 IF (K.EQ.4) GOTO 51
- 4. Write the following program segment in only three statements :
 - 21 J=J + 1 IF (I.GT.J) GOTO 26 GOTO 21 26 I=I+1
- **5.** Write a program which will read a matrix B with two-dimensional arrays of m rows and n columns in row-wise using implied DO notation.

MATH/V/CC/08 (c)**/137**

- 6. What will be the value of L at the end of the following program?
 - L=3 1 L=L/4*4.+L
 - IF(L.GE.7)STOP 5 L=L-1
 - IF(L-3*L/4)1,5,4 4 L=L-1 WRITE(*,*)L END
- **7.** Write a program to find the curved surface area of a cylinder using subroutine subprogram.
- **8.** Write a simple but complete programme illustrating the use of arithmetic statement functions.

(**PART : B**—DESCRIPTIVE)

(*Marks*: 52)

Each question carries 13 marks

Answer four questions, selecting one from each Unit

Unit—I

- **1.** (*a*) Draw an algorithm and flowchart to find the GCD of any two positive integers. 3+3=6
 - (b) Write the general form of DATA statement. What will be the values of A and B from the following statements? 2+2=4
 - (i) DATA A,B/25.2,19.8/
 - (ii) DATA A,B/2*3.7/
 - (c) What are the values of I and J in the following arithmetic statement, if J=1, K=3?

I=J*2/3 + K/2 + 6 - J*3/8 J=I + K

MATH/V/CC/08 (c)**/137**

[Contd.

- (a) If I=J=1; what values the following logical expressions have?
 (I.GT.0).AND.(J.LT.0)).OR.(.NOT.(J.GT.0).AND..NOT.(I.LT.0))
 - (b) Write short notes on any two of the following :
 - *(i)* Complex variable
 - (ii) Double-precision statement
 - (iii) Logical variable
 - (c) Write a flowchart to find factorial of a positive integer n>1. Also write a complete FORTRAN program for this.
 2+4=6

Unit—II

3. (a) The sum of the squares of the first n natural numbers is given by

$$\operatorname{sum} = \frac{n(n-1)(2n-1)}{6}$$

Write a FORTRAN program to find the sum.

(b) Write the general form of IF-THEN-ELSE statement. Suppose the value of *Y* is given by the equation

 $Y = \begin{array}{cccccccccc} x^5 & , & \text{if} & x & 3 & 0572 \\ x^3 & 3x & 4 & , & \text{if} & x & 3 & 0572 \end{array}$

Write FORTRAN program to evaluate Y using IF-THEN-ELSE statement.

2+3=5

4

4

2+2=4

- (c) Write a program to find the sum of digits of a five-digit number using DO loop.
- 4. (a) N is said to be a prime number, if its only divisors are 1 and itself.
 Write a FORTRAN program using 'DO loop' that reads an integer N 2 and determine if N is a prime by testing, if N is divisible by any of the integers 2, 3, ... N / 2.
 - (b) Write the general form of DO statement. Correct the following program segments : 1+2+2=5
 - (*i*) IF (N.LE.9) GOTO 25 DO 20 I=1, 50 X=N*10
 - 25 SUM=SUM+X
 - 20 CONTINUE

[Contd.

 (ii) IF (N.LT.10) GOTO 20 DO 20 I=1,40 SUM=SUM+I
 20 CONTINUE

(c) Write a FORTRAN program in two ways using—(i) 'logical if' statement, (ii) 'arithmetic if' statement, that reads the coefficients A, B (A 0) of the linear equation AX B 0 and computes its root, when it is positive and gives appropriate message when it encounters a negative root. 2+2=4

UNIT—III

5. (a) In the following matrix

- (i) What are the values of i and j in case of the element '4'?
- (ii) Write the print statement in FORTRAN to display all the elements of A. 1+3=4
- (b) Write a program to find the product of two matrices. 5
- (c) Write a program to arrange the numbers in ascending order. 4

6. (a) A Fibonacci sequence is defined as follows :

The first term and the second term of the sequence are 0 and 1. The third and subsequent terms in the sequence are found by adding the preceding two terms of the sequence. A part of the sequence is 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Write a program to obtain the first 200 terms of this sequence. 7

(b) Economic order quantity may be calculated from the equation $Q = \sqrt{\frac{2RS}{I}}$, where *R* is the yearly requirement, *S* the setup cost and *I* the carrying cost per item. The values of *R*, *S* and *I* for 15 items in a factory are given. Write a program using DO loop and subscripted variables to calculate the economic order quantity for each of the items.

6

Unit—IV

- **7.** (a) Write a function subprogram to find the factorial of *n*. Also write a main program to call this function and evaluate ${}^{n}C_{r}$, where ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$.
 - (b) The following is the relationship between the rectangular coordinates (x, y) and the polar coordinates (r,) of a point

Write a 'subroutine subprogram' to convert rectangular coordinates of a point to its polar coordinates. Call this subroutine in a main program that reads the values of x and y and prints out both the rectangular and the polar coordinates for the point. 3+4=7

8. (a) A function f(x) is defined as follows :

Write a function subprogram to evaluate the function. Also write a main program which will compute the value of $2f(x) [f(x)]^2$. 5

(b) Write a subroutine to find the roots of a quadratic equation $ax^2 bx c$ 0. Also write a main program to call this subroutine. 4+4=8

 $\star\star\star$

3+3=6