MATH/V/CC/07

Student's Copy

2019

(CBCS)

(5th Semester)

MATHEMATICS

SEVENTH PAPER (Math-353)

(Complex Analysis)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

Answer **all** questions

SECTION-A

(Marks: 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

1. If z_1 i and z_2 $\sqrt{3}$ i, then the arg $\frac{z_1}{z_2}$ is (a) $\frac{1}{3}$ \Box (b) $\frac{5}{6}$ \Box (c) $\frac{4}{3}$ \Box (d) $\frac{3}{4}$ \Box

/137

- **2.** The value of z^4 for z = 1 *i* is
 - (a) 2i (b) 4 (c) $3\sqrt{3}$ (c) $3\sqrt{3}$ (c) $\sqrt{3}$ (c) $\sqrt{3}$

3. The value of z for which the function w defined by $z e^{-v}(\cos u - i \sin u)$, where w - u - iv ceases to be analytic is

(a) i \Box (b) i \Box (c) 0 \Box (d) \Box

4. The function $f(z) |xy|^{1/2}$

- (a) is everywhere continuous and analytic \Box
- (b) is everywhere continuous but not analytic \Box
- (c) is discontinuous but analytic everywhere \Box
- (d) Cauchy-Riemann equation is satisfied at the origin but not analytic at that point

5. A sequence with more than one limit point

- (a) is convergent always \Box
- (b) may be convergent \Box
- (c) cannot convergent \Box
- (d) None of the above \Box

6. A power series within its circle of convergence

- (a) converges absolutely \Box
- (b) converges uniformly \Box
- (c) converges absolutely and uniformly \Box
- (d) is divergent \Box

MATH/V/CC/07/137

7. For an arc L, the value of |dz| is equal to

L

- (a) the length of the arc \Box
- (b) 2 i 🗌
- (c) 0
- (d) None of the above \Box

8.	The integral	of \overline{z} along	g the above	part of real	l axis of a	semi-circular	arc z	1 is
•••	The meesion		5	partoriou				

- (a) i \Box (b) 2 i \Box (c) i \Box
- (d) 2 i \Box
- **9.** If a function f(z) is analytic within and on a circle *C*, then Taylor's series is valid for
- (a) every point inside C (b) every point on the circle C(c) some annulus (d) every point inside and on a circle C1 **10.** The nature of the point z 0, for the function $f(z) = e^{\overline{z}}$ is (a) removable singularity (b) pole (c) essential singularity (d) zero

MATH/V/CC/07**/137**

SECTION-B

(Marks: 15)

Each question carries 3 marks

1. Find an upper bound for $\left|\frac{1}{z^4 \quad 5z \quad 1}\right|$, if $|z| \quad 2$.

Find the condition for which the four points z_1 , z_2 , z_3 and z_4 to be concyclic.

2. For what value of z the function w defined as $z \sinh u \cos v$ $i \cosh u \sin v$, where w u iv ceases to be analytic?

OR

If f(z) is a regular function of z, then prove that

$$\frac{2}{x^2} - \frac{2}{y^2} \log |f(z)| = 0$$

3. For what value of z the power series $n = 1 \frac{1}{(z^2 = 1)^n}$ will converge?

OR

Find the radius of convergence of the series

$$\frac{z}{2} \quad \frac{1.3}{2.5} z^2 \quad \frac{1.3.5}{2.5.6} z^3 \quad \dots$$

4. Evaluate $\frac{z}{L} = \frac{2}{z} dz$, where L is semi-circle $z = 2e^{it}$, 0 = t.

OR

Evaluate the integral $\begin{bmatrix} 1 & i \\ 0 \end{bmatrix} z^2 dz$.

5. What kind of singularity has the function $(\sin z \ \cos z)$ at z?

OR

Prove the minimum modulus principle with the help of maximum modulus principle.

MATH/V/CC/07**/137**

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions Answer **one** question from each Unit

Unit—I

1. ((a)	Prove that the sum and product of two complex numbers are real if and only if they are conjugate to each other.	4						
((b)	Find the loci of the point <i>z</i> satisfying the following conditions : (i) $\begin{vmatrix} z & i \\ z & i \end{vmatrix} = 2$	6						
		(ii) arg $\frac{z}{z}$ $\frac{1}{z}$ $\frac{1}{3}$							
2. ((a)	Find the inverse of the point (i) with respect to the circle passing through the points 1, i , 1 i .	6						
((b) Prove that $ z_1 \ z_2 \ z_1 \ z_2 $, and deduce that								
	$ z_1 z_2 ^2 z_1 z_2 ^2 2(z_1 ^2 z_2 ^2)$								
		where z_1 and z_2 are any complex numbers.	4						
UNIT—II									
3. ((a)	State and prove Cauchy-Riemann equation.	5						
((b)	Prove that $w z ^2$ is continuous everywhere but nowhere differentiable except at origin.	5						
4. ((a)	Show that the function $u \cos x \cosh y$ is harmonic. Find its harmonic conjugate and corresponding analytic function.	3						
((b)	If $u v (x y)(x^2 4xy y^2)$, then find the analytic function $f(z) u iv$ in terms of z .	3						
MATH	[/V/	CC/07 /137 5 [Cor	ıtd.						

(c) If f(z) is a regular function of z, then prove that

$$\frac{2}{x^2} \quad \frac{2}{y^2} \quad |Rf(z)|^2 \quad 2|f(z)|^2$$

where R f(z) represents the real part of f(z). 4

5. (a) State and prove Cauchy-Hadamard theorem. 6

(b) Find the radii of convergence of the following series : 4

(i)
$$n \frac{n!}{n} z^n$$

(ii) $n \frac{1}{2n} \frac{2^n}{2^n} z^n$

6. (a) Find the circle of convergence of the following series : 6

(i)
$$n = 1 \frac{z^2 - 1}{1 - i} n^n n^2$$

(ii) $n = 1 \frac{iz - 1}{2 - i} n^n$

(b) Examine the behaviour of the power series $n = \frac{z^{4n}}{4n-1}$ on the circle of convergence.

UNIT—IV

7. (a) A function f(z) is continuous on a contour C of length l and if M be the upper bound of |f(z)| on C, then show that

$$\begin{vmatrix} f(z) dz \\ C \end{vmatrix} Ml$$
5

MATH/V/CC/07/137

(b) If a function f(z) is analytic within and on a closed contour C, then show that the derivatives of all orders are analytic and are given by

$$f^{(n)}(a) = \frac{n!}{2 i} \frac{f(z)}{c (z - a)^{n-1}} dz$$
 5

8. (a) Evaluate $\int_{C} \frac{e^{az}}{z^{n-1}} dz$, where C is a closed contour containing the origin inside it.

(b) Evaluate the integral $\frac{zdz}{C(9 \ z^2)(z \ i)}$, where C is the circle $|z| \ 2$

described in the positive sense.

UNIT-V

9. (a) Let f(z) is analytic in the closed ring bounded by two concentric circles C and C of centre a and radii R and R (R R). If z be any point of the annulus, then show that

$$f(z) = {n \ 0} a_n (z \ a)^n = {n \ 1} b_n (z \ a)^n$$

where

$$a_n = \frac{1}{2 i} \frac{f(t)}{(t-a)^{n-1}} dt \text{ and } b_n = \frac{1}{2 i} \frac{f(t)}{(t-a)^{n-1}} dt$$

(b) If f(z) is an integral function satisfying the inequality |f(z)| = M for all values of z, where M is a positive constant, then prove that f(z) is constant.

10. (a) Expand the function
$$\frac{1}{z^2 \quad 3z \quad 2}$$
 in the region (i) $0 \quad |z| \quad 1$ and (ii) $1 \quad |z| \quad 2$.

- (b) Find the kind of singularities of the following functions :
 - (i) $\sin \frac{1}{1-z}$ at z = 1

(ii) z cosecz at z

* * *

7

MATH/V/CC/07/137

20G-170

5

4

6

4

5