MATH/V/CC/07

Student's Copy

2018

(CBCS)

(5th Semester)

MATHEMATICS

SEVENTH PAPER (Math-353)

(Complex Analysis)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Each question carries 1 mark

Tick (\checkmark) the correct answer in the brackets provided :

- **1.** The value of $(1 \ i)^{5404}$ is
 - (a) 2^{2702} ()
 - (b) 2^{2702} ()
 - *(c)* 0 *()*
 - (d) 1 ()

/134

- **2.** The equation of ellipse in complex form whose major axis is 7 and foci at (2, 0) and (2, 0) is
 - (a) z | z 2 | 4 () (b) z(z 4) 7 () (c) | z 2 | | z 2 | 7 () (d) $z^2 11$ ()
- **3.** The corresponding analytic function for the function $u = e^{x}(x \cos y + y \sin y)$ is
 - (a) e^{z} () (b) e^{z} () (c) ze^{z} () (d) $e^{z}(z 1)$ ()

4. The derivative of the function $r^n \{\cos n \ i \sin n \}$ is

- (a) $nr^{n-1}\{\cos(n-1) \ i\sin(n-1)\}$ () (b) $n(n-1)\{\sin(n-1) \ i\cos(n-1)\}$ () (c) $n(n-1)^2\{\sin(n-1) \ i\cos(n-1)\}$ ()
- (d) $(n \ 2)r^{n \ 2} \{ \sin(n \ 2) \ i\cos(n \ 2) \}$ ()

5. The radius of convergence of the series $\frac{1}{n^n} z^n$ is

- (d) 0 ()

MATH/V/CC/07/134

6. The series ${}_0 z^n$ is divergent for

 (a) |z| 1
 ()

 (b) |z| 1
 ()

 (c) |z| 1
 ()

 (d) |z| 0
 ()

7. The value of $\frac{1}{z}dz$ along a semi-circular arc |z| 1 from 1 to 1 is

- (a) i ()
- (b) i ()
- (c) i ()
- (d) i ()

8. The value of $_C z \, dz$ (where C is a curve from z a to z b) is

- (a) b a ()
- (b) $b^2 a^2$ ()
- (c) $\frac{b^2 a^2}{2}$ () (d) $\frac{b a}{2}$ ()

9. The function $\log z$ has a singularity at origin

- (a) as removable singularity ()
- (b) as pole ()
- (c) as essential singularity ()
- (d) as non-isolated singularity ()

MATH/V/CC/07/134

- **10.** If f(z) be analytic within and on a simple closed contour *C*, then the point giving the maximum of | f(z) | can be
 - (a) within C ()
 - (b) outside C ()
 - (c) on the boundary of C and not within it ()
 - (d) on the boundary of C and not within C (

SECTION-B

(Marks: 15)

Each question carries 3 marks

Answer the following questions :

1. Find the value of |z| from $iz^2 \ \overline{z} \ 0$.

OR

Find the inverse of the point $(1 \ i)$ with respect to the circle $|z| \ 1$.

2. Show that $f(z) |z|^2$ is not differentiable for any non-zero value of z.

OR

For what value of z the function w defined by $z e^{v} (\cos u i \sin u)$, where w u iv ceases to be analytic?

3. For what value of z the power series $!nz^n$ will converge and diverge?

OR

Find the radius of convergence of the series

 $n \ 2 \frac{z^n}{n (\log n)^2}.$

MATH/V/CC/07/134

4. Evaluate $\int_{L} \frac{z}{z} \frac{2}{z} dz$ where L is semi-circle $z = 2e^{it}$, 0 = t.

OR

Evaluate $_{C} | z | dz$ where C is circle | z | 1 | 1 described in the positive sense.

5. Define isolated singularity with example.

OR

Find the nature and location of the singularity of the function $f(z) = \frac{1}{z(e^z - 1)}$.

(**PART** : **B**—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions Answer **one** question from each Unit

UNIT—I

1.	(a)	Show that $ z_1 \ z_2 \ z_3 \ z_1 \ z_2 \ z_3 $.	5
	(b)	Find the locus of the point z satisfying the condition $ z^2 1 1$.	5
2.	(a)	Find the equation of the circle through the points 3 i , 2 $2i$, 1 i . Also find its centre and radius.	6
	(b)	Prove that $ z_1 \ z_2 ^2 \ z_1 \ z_2 ^2 \ 2(z_1 ^2 \ z_2 ^2)$ where z_1 and z_2 are any complex numbers.	4

MATH/V/CC/07/134

UNIT—II

3. (a) For an analytic complex function f(z) = u(r, -) iv (r, -), show that

$$\frac{-u}{r} \quad \frac{1}{r} \frac{-v}{-r} \text{ and } \frac{-u}{-r} \quad r \frac{-v}{-r} \qquad 5$$

- (b) If $u = x^3 = 3xy^2$, then show that there exists a function v(x, y) such that w = u = iv is analytic in any finite region. 5
- **4.** (a) If f(z) u iv is an analytic function and u v $(x \ y)(x^2 \ 4xy \ y^2)$, then find f(z) in term of z. 5
 - (b) If f(z) = u iv is an analytical function of z = x iy and is any function of x and y, then show that

$$\frac{2}{x^2} \quad \frac{2}{y^2} \quad \frac{2}{u^2} \quad \frac{2}{v^2} \quad |f(z)|^2 \qquad 5$$

Unit—III

- 5. (a) If the power series $a_n z^n$ converge for a particular value z_0 of z, then prove that it converges absolutely for all values of z for which $|z| |z_0|$. 5
 - (b) Find the domain of convergence of the series $\frac{z^2}{1-i}n^2$. 5
- **6.** (a) Find the radius of convergence of the power series $f(z) = \frac{z^n}{2^n 1}$ and prove that $\{(2 \ z) f(z) \ 2\} = 0$ as z = 2.
 - (b) Find the domain of convergence of the power series $\frac{2i}{z i 1}^n$. 5

MATH/V/CC/07**/134**

6

7. (*a*) Show that

$$\left| \begin{array}{c} f(z) dz \\ L \end{array} \right| \left| f(z) \right| |dz|$$

where L is the rectifiable curve of f(z).

(b) Let f(z) is an analytic function in a simple connected domain D bounded by a rectifiable curve C and is continuous in C. If a be any point of D, then show that

- **8.** (a) If a function f(z) satisfying the inequality |f(z)| = M for all values of z, where M is a positive constant, then show that f(z) is constant function.
 - (b) Evaluate by Cauchy integral formula $C \frac{dz}{z(z i)}$ where C is |z 3i| 4. 5

UNIT-V

9. (a) Expand
$$\frac{1}{z(z^2 \ 3z \ 2)}$$
 for the region 1 $|z|$ 2. 5

(b) Examine the singularity of the function-

(i)
$$\frac{\cot z}{(z \ a)^2}$$
 at $z \ a$ and z ;
(ii) $\operatorname{cosec} \frac{1}{z}$ at $z \ 0.$ 5

10. State and prove maximum modulus theorem.

* * *

MATH/V/CC/07**/134**

G9-220

10

4

5