2019

(CBCS)

(5th Semester)

MATHEMATICS

FIFTH PAPER

(Computer-Oriented Numerical Analysis)

Full Marks: 75

Time: 3 hours

(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks*: 10)

Tick \square the correct answer in the box provided :

 $1 \times 10 = 10$

1. By definition of backward difference operator f(x) equals to

- (a) f(x h) f(x)
- (b) f(x h) f(x)
- (c) f(x) f(x h)
- (d) f(x) f(x h)

2.	The Newton-Raphson formula to find the cube root of a positive number N is
	(a) $x_{n-1} = \frac{1}{3} 2x_n = \frac{N}{x_n^2}$
	(b) $x_{n-1} \frac{1}{3} x_n \frac{N}{x_n^2}$
	(c) $x_{n-1} = \frac{1}{3} x_n = \frac{N}{2x_n^2}$
	(d) $x_{n-1} \frac{1}{3} x_n \frac{2N}{x_n^2}$
3.	If f (75) 246, f (80) 202, f (85) 118 and f (90) 40, then f (79) is (a) 210·512 \Box (b) 215·472 \Box (c) 115·472 \Box (d) 225·472 \Box
4.	Given that $f(1)$ 1, $f(2)$ 9, $f(2)$ 11, then $f(0)$ (a) 1 \Box (b) 2 \Box (c) 4 \Box (d) 5 \Box
5.	In Gauss elimination method, the given system of simultaneous equations transform to
	(a) upper triangular matrix \Box (b) lower triangular matrix \Box (c) diagonal matrix \Box (d) scalar matrix \Box
6.	Given that
	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	0 1 2
	then
	 (a) A is upper triangular matrix (b) A is lower triangular matrix (c) A is diagonally dominant matrix (d) A is a diagonal matrix
7.	If $f(1) = 0$, $f(2) = 1$ and $f(3) = 4$, then $f(3)$ is equal to (a) $3 = \square$ (b) $5 = \square$ (c) $2 = \square$ (d) $4 = \square$

8. From the table, the value of f (15) equals

х	15	17	19	21	23	25
$f(x) = \sqrt{x}$	3.873	4.123	4.359	4.583	4.796	5.000

(a) 0.129

- (b) 0·131

(c) 0·135

- (d) 0.141
- 9. The Euler's modified formula is given by

- (a) y_{n-1} y_n $hf(x_n, y_n)$
- (b) y_{n-1} y_n $\frac{h}{2}[f(x_n, y_n) \ f(x_{n-1}, y_{n-1})]$
- (c) y_{n-1} y_n $\frac{h}{3}[f(x_n, y_n) \ f(x_{n-1}, y_{n-1})]$
- (d) y_{n-1} y_n $h[f(x_n, y_n) \ f(x_{n-1}, y_{n-1})]$

- 10. For solving ordinary differential equation numerically, which among the following is applied if successive derivatives can be obtained easily?
 - (a) Taylor's method

(b) Runge-Kutta method

(c) Euler's method

(d) Picard's method

SECTION—B (Marks: 15)

Answer the following questions:

 $3 \times 5 = 15$

- **1.** (a) Prove that E
- E

OR

- (b) Find the value of $n(e^x)$.
- **2.** (a) Find the missing term in the given table :

х	100	101	102	103	104
y	2	2.0043	_	2.0128	2.0170

OR

(b) If $f(x) = \frac{1}{x^2}$, find the divided difference of (a, b).

3. (a) Solve by Gauss-Jordan method x y 4 and 2x y 2.

OR

(b) Solve the given equation by Crout's method:

$$x \ 2y \ 3, \ 2x \ 3y \ 1$$

4. (a) Find the value of $\log 2^{\frac{1}{3}}$ from $\int_{0}^{1} \frac{x^2}{1 + x^3} dx$, using Simpson's one-third rule with h = 0.25.

OR

(b) Find f (2) from the following table :

х	1	2	3	4	5
y	0	3	8	15	24

5. (a) Using Runge-Kutta formula of order 2, find y (1 1), given that

$$\frac{dy}{dx}$$
 3x y^2 , y (1) 1 2

OR

(b) Write the algorithm of Euler's method for numerical solution of differential equation.

(PART : B—DESCRIPTIVE)

(*Marks*: 50)

The figures in the margin indicate full marks for the questions

Answer **one** question from each Unit

UNIT—I

- **1.** (a) Find the function whose first difference is $x^3 3x^2 5x 12$.
 - (b) Find the positive root of the equation $3x \cos x + 1 + 0$ by Newton-Raphson method correct to four decimal places.

2. (a) Solve the equation xe^x 2 0 by Newton-Raphson method.

5

(b) Write the algorithm of regula falsi method for finding the root of the equation f(x) = 0.

5

UNIT—II

3. (a) Deduce Lagrange's interpolation formula for unequal interval.

5

(b) From the following table, evaluate f (3 8) using Newton's backward interpolation formula :

5

$x \mid 0$		1	2	3	4
y	1.00	1.50	2.20	3.10	4.60

4. (a) Obtain Newton's divided difference interpolation for non-equal intervals of the arguments.

5

(b) Using Newton's divided difference formula, evaluate f (10), given that

x	0	2	5	9	11
у	1	5	116	712	1310

5

UNIT—III

5. (a) Solve the following system of equations by Gaussian elimination method:

5

$$6x \ y \ z \ 19, 3x \ 4y \ z \ 26, x \ 2y \ 6z \ 22$$

(b) Solve the following system of equations by Crout's method:

5

$$x \quad y \quad z \quad 3, \ 2x \quad y \quad 3z \quad 16, \ 3x \quad y \quad z \quad \ 3$$

6. (a) Write an algorithm for Gauss-Seidel iteration method.

5

(b) Solve by using Gauss-Seidel method correct to three decimal places:

5

7. (a) Find the first and second derivative of the following tabulated function at the point x = 1 + 5:

х	1.5	2	2.5	3	3.5	4
f(x)	3.375	7.0	13.625	24	38.875	59.0

(b) Compute by Simpson's rule the value of the integral

$$I = \int_0^1 \frac{x^2}{1 + x^2} dx$$

by dividing into four equal parts.

8. (a) Deduce the formula for Simpson's one-third rule.

(b) Evaluate $I = \frac{3}{0} \frac{x}{\cos x} dx$ by using trapezoidal rule correct up to four decimal places.

9. (a) Using Taylor series method, find y (0 1) correct to four decimal places, given that $\frac{dy}{dx}$ x^2 y^2 , y (0) 1.

(b) Find the approximate solution of the initial value problem $\frac{dy}{dx}$ 1 y^2 , y(0) 0 by Picard's method and compare it with the exact solution.

- **10.** (a) Apply Euler's modified method to solve $\frac{dy}{dx}$ x 3y subject to y (0) 1 and hence find an approximate value of y when x 1.
 - (b) Using Milne's predictor-corrector method, find y (0 4) for the differential equation $\frac{dy}{dx}$ 1 xy, y (0) 2.

* * *

5

5

5

5

5

5

5