MATH/V/CC/05

Student's Copy

2018

(CBCS)

(5th Semester)

MATHEMATICS

FIFTH PAPER (Math-351)

(Computer-oriented Numerical Analysis)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A (Marks: 10)

Tick \square the correct answer in the box provided : $1 \times 10 = 10$

- **1.** Which of the following identities is true?
 - (a) E 1
 \Box (b) E 1
 \Box

 (c) E 1
 \Box (d) E 1
 \Box
- **2.** The best method among the following for finding the solution of algebraic and trancendental equations is
 - (a) bisection□(b) iteration□(c) regula falsi□(d) Newton-Raphson
- **3.** While constructing a backward difference table, if seven arguments are given, the backward difference table will contain term up to

(a)	^{5}y	<i>(b)</i>	^{6}y	
(c)	^{7}y	(d)	^{8}y	

/132

[Contd.

 \square

4. If $f(x) = \frac{1}{x^3}$, then the divided difference of (1, 2) equals

(a)	$\frac{1}{8}$	<i>(b)</i>	$\frac{3}{8}$	
(c)	$\frac{5}{8}$	(d)	$\frac{7}{8}$	

- **5.** Back substitution procedure of solving a simultaneous linear equation is given by
 - (a) Gauss elimination method \Box
 - (b) Crout's method \Box
 - (c) Gauss-Jordan method \Box
 - (d) Gauss-Seidel method \Box
- **6.** In solving simultaneous linear equation by using Crout's method, we have *A LU*, where *A* is the coefficient matrix, then
 - (a) L is diagonal triangular matrix \Box
 - (b) U is lower triangular matrix \Box
 - (c) L is upper triangular matrix \Box
 - (d) U is upper triangular matrix \Box
- 7. From the general quadrature formula, we can obtain a variate formula for calculating the numerical value of a definite integral by putting n 1, 2, 3, The best are found for
 - (a) n 1 and n 2
 - (b) $n \ 2 \text{ and } n \ 6 \ \Box$
 - (c) $n \ 2 \text{ and } n \ 4 \ \Box$
 - (d) n 4 and n 6

8. The Simpson's one-third rule in numerical integration needs at least

- (a) a parabolic curve \Box
- (b) a circular curve \Box
- (c) four geometrical points \Box
- (d) three geometrical points \Box

MATH/V/CC/05**/132**

[Contd.

9. The *n*th approximation in Picard's iteration formula is given by

(a)
$$y_{n 1} y_n hf(x_n, y_n)$$

(b) $y_n y_0 \frac{x}{x_0} f(x_n, y_n) dx$
(c) $y_n y_0 \frac{x}{x_0} f(x, y_{n 1}) dx$
(d) $y_n y_0 \frac{x}{x_0} f(x_{n 1}, y_n) dx$
(c) $y_n y_0 \frac{x}{x_0} f(x_{n 1}, y_n) dx$

10. For solving ordinary differential equation numerically, the most reliable and the most accurate among the following is

 \square

- (a) Taylor's method \Box
- (b) Picard's method \Box
- (c) Euler's method \Box
- (d) Runge-Kutta method

SECTION—B

(Marks: 15)

Answer the following questions :

1. Find ${}^{n}u_{x}$, where $u_{x} e^{ax b}$ (here a and b are constants).

OR

Find the second difference of $y 7x^4 12x^3 6x^2 5x 3$, if h 2.

2. Find the cubic polynomial interpolation which takes on the values

$$f(1)$$
 1, $f(2)$ 9, $f(3)$ 25, $f(4)$ 55

OR

If $f(x) = \frac{1}{x^3}$, find the divided difference of (a, b, c).

3. Define diagonally dominant matrix. Is the following system of equations diagonally dominant?

Solve the given equation by Crout's method : x y 2; 2x 3y 5

MATH/V/CC/05/132

[Contd.

 $3 \times 5 = 15$

4. Find the value of $\frac{1}{0} \frac{dx}{1-x}$ using Simpson's one-third rule by taking n = 2.

OR

Derive the formula for trapezoidal rule for numerical integration.

5. Use Picard's method to solve $\frac{dy}{dx}$ xy, y(0) 1.

OR

Apply Runge-Kutta formula of order 2, approximate the value of y for x 1 1, given $\frac{dy}{dx} = 3x + y^2$, y(1) = 1 = 2.

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

Unit—I

1.	(a)	Express	$3x^4$ 4	$4x^3$ 6.	$x^2 2x$	1 in	terms	of fact	orial p	olynomial and	
		find its f	ourth-	order d	ifferend	ce.					5
	(b)	Find the	root of	the equ	lation ι	using b	isectior	n metho	od in fo	ur stages :	5
					x^3	4 <i>x</i> 9	0				
2.	(a)	Find a ro using reg	oot of t gula fa	the equ lsi met	ation <i>x</i> hod.	$x^3 x^2$	3x	3 0 ly	ing bet	ween 1 and 2	5
	(b)	Write an method.	algori	ithm fo	or solvi	ng a g	given e	quatior	ı by u	sing bisection	5
					τ	Jnit—I	Ι				
3.	(a)	Obtain N equal int	lewton cervals	's forwa of the	ard int argum	erpolat ent.	ion for	mula f	or inte	rpolation with	5
	(b)	Find the	missir	ng valu	es fron	n the f	ollowin	g table	:		5
			x	0	5	10	15	20	25		
				1							

f(x)

6

10

_

17

31

- **4.** (*a*) Obtain Lagrange's interpolation formula for interpolation with unequal intervals of the argument.
 - (b) Prepare a divided difference table for the following data :

x	1	2	4	7	12
y	22	30	82	106	216

Hence by using Newton's divided difference formula, find f(5).

UNIT—III

5. (a) Solve the following system of equations by Gaussian elimination method :

- (b) Solve the following system of equations by Crout's method : 5 $4x \ y \ z \ 13$, $3x \ 5y \ 2z \ 21$, $2x \ y \ 6z \ 14$
- **6.** (a) Solve the system of linear equations by Gauss-Jordan method : 5 x y z 9, 2x 3y 4z 13, 3x 4y 5z 40
 - (b) Solve by using Gauss-Seidel method : $6x \ y \ z \ 105, \ 4x \ 8y \ 3z \ 155, \ 5x \ 4y \ 10z \ 65$

UNIT-IV

7.	(a)	Write an	algorithm	for	Simpson's	one-third	rule.	5
----	-----	----------	-----------	-----	-----------	-----------	-------	---

(b) From the table below, evaluate f (14 9):

x	14.1	14.3	14.5	14.7	14.9	15.1	15.3
y	7.25	8.17	9.04	10.42	11.99	14.11	17.08

8. (*a*) Obtain the general quadrature formula for equidistant points to find the approximate integration of any function for which numerical values are known.

(b) Evaluate
$$\int_{0}^{10} \frac{dx}{1-x^2}$$
 by using trapezoidal rule. 5

MATH/V/CC/05**/132**

[Contd.

5

5

5

5

5

UNIT-V

- **9.** (a) Using Taylor's series method, obtain the solution of $\frac{dy}{dx} = 3x + y^2$ and y 1 when x 0. Find the value of y for x 0.1, correct to four places of decimals.
 - (b) Use Picard's method to solve

$$\frac{dy}{dx} \quad xy, \quad y(0) \quad 1 \qquad 5$$

- **10.** (a) Using Euler's method, find an approximate value of y corresponding to x 2, given that $\frac{dy}{dx} = x + 2y$, y(1) = 1. 5
 - (b) Apply Runge-Kutta method (fourth order) to find an approximate value of y when x 0.2, given that $\frac{dy}{dx} = x - y^2$, y(0) = 1. 5

* * *

5