2018

(Pre-CBCS)

(5th Semester)

MATHEMATICS

EIGHTH (B) PAPER: MATH-354 (B)

(Probability Theory)

Full Marks: 75

Time: 3 hours

(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Tick $\ensuremath{\boxtimes}$ the correct answer in the box provided :

 $1 \times 10 = 10$

- **1.** If S is a sample space of a random experiment, then
 - (a) P(S) = 0
- (b) P(S)
- (c) P(S) 1
- (d) $P(S) = \frac{1}{2}$

- **2.** When A and B are mutually exclusive events,
 - (a) $P(A \ B) \ 0$
 - (b) P(A B) 1
 - (c) $P(A \ B) \ P(B)$
 - (d) $P(A \quad B) \quad P(A)$
- **3.** If

$$p(x)$$
 $\frac{x}{15}$, x 1, 2, 3, 4, 5
0, elsewhere

then P(X 1 or 2) is

- (a) $\frac{1}{5}$
- (b) $\frac{2}{5}$
- (c) $\frac{3}{5}$
- (d) $\frac{4}{5}$
- **4.** If X is a continuous random variable with probability density function f(x), then the arithmetic mean is given by
 - (a) $\int_{a}^{b} f(x)dx$
 - (b) $\int_{a}^{b} x f(x) dx$
 - (c) $\int_{a}^{b} x^2 f(x) dx$
 - (d) $\int_{a}^{b} x^{r} f(x) dx$

5.		X, Y) is a ction of X ,			, then the	conditional	probability	mass
	(a)	$P_{X Y}(x y)$	P(X)	(x)				
	(b)	$P_{Y X}(y x)$	$\frac{P(X)}{P(X)}$	(x, Y y)				
	(c)	$P_{Y X}(x y)$	$\frac{P(X)}{P(Y)}$	(x, Y y)				
	(d)	$P_{X Y}(x y)$	$\frac{P(X)}{P(Y)}$	(x, Y y)				
6.	The	marginal e	density f	function of	of X is give:	n by		
	(a)	$f_X(x)$	$f_{XY}(x,$	y)dy				
	(b)	$f_X(x)$	$f_{XY}(x,$	y)dx				
	(c)	$f_{Y}(x)$	$f_{XY}(x,$	y)dy				
	(d)	$f_{Y}(x)$	$f_{XY}(x,$	y)dx				
7.	For goo	_	m varial	oles X an	d Y, the re	elation $E(XY)$	E(X).E(Y)	holds
	(a)	if X and Y	are ind	lependent				
	(b)	for all X a	and Y					
	(c)	if X and Y	are ide	ntical				
	(d)	None of th	ne above]			
8.	If X	is a rando	om varia	ble and a	a and b are	constants,		
	(a)	V(aX b)	aV(X)	b				
	(b)	V(aX b)	aV(X)	V(b)				
	(c)	V(aX b)	$a^2V(X)$					

(d) $V(aX \ b) \ aV(X)$

9.	The characteristic function of the Poisson distribution is						
	(a) $(q pe^t)^n$						
	(b) $e^{(e^{it} \ 1)}$ \square (c) $(p \ qe^t)^n$ \square						
	(d) $\frac{q}{p^2}$						
10.	The relationship between mean and variance of geometric distribution is						
	(a) mean = variance \Box						
	(b) mean = 2 variance \Box						
	(c) mean > variance						
	(d) mean < variance \Box						
	SECTION—B						
	(<i>Marks</i> : 15)						
Ans	wer the following questions: 3×5=15						
1.	If A and B are independent events, then show that \overline{A} and B are independent.						
2. The mean and variance of binomial distribution are 4 and $\frac{4}{3}$ respective							
	Find $P(X = 1)$.						
3.	For two-dimensional random variable (X, Y) with joint distribution function $F_{XY}(x, y)$, prove that $f_{Y X}(y x) = \frac{f_{XY}(x, y)}{f_{X}(x)}$, where $f_{X}(x) = 0$.						
4.	If X and Y are random variables, prove that $E(aX bY) aE(X) bE(Y)$,						

where a and b are constants.

5. Find the moment generating function of a gamma distribution.

(PART : B—DESCRIPTIVE)

(*Marks*: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

UNIT—I

- **1.** (a) State the axiomatic definition of probability. Prove that $P(\overline{A}) = 1 P(A)$, where \overline{A} is the complementary event of A.
 - (b) Two dice are tossed. Find the probability of getting 'an even number on the first die or a total of 8'.
- 2. State and prove Bayes' theorem.

UNIT—II

3. (a) Let X be a continuous random variable with probability density function

$$f(x) = \begin{cases} ax, & 0 & x & 1 \\ a, & 1 & x & 2 \\ ax & 3a, & 2 & x & 3 \\ 0, & & \text{elsewhere} \end{cases}$$

- (i) Determine the constant a.
- (ii) Compute P(X 1 5).

(b) With the usual notations, find p for a binomial variate X, if n 6 and 9P(X 4) P(X 2).

4. (a) A continuous random variable X has a probability density function $f(x) \ 3x^2$, $0 \ x$ 1. Find a and b such that—

- (i) $P(X \quad a) \quad P(X \quad a)$;
- (ii) P(X b) 0 05.

5

5

5

5

5

10

(b) A random variable X has the following probability function:

 $x : 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7$

p(x): 0 k 2k 2k 3k k^2 $2k^2$ $7k^2$ k

Find—

(i) k;

(ii) P(X = 6).

Unit—III

5. (a) For the bivariate probability distribution of X and Y given below:

Y X	1	2	3	4	5	6
0	0	0	1/32	$\frac{2}{32}$	$\frac{2}{32}$	$\frac{3}{32}$
1	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
2	1/32	1/32	1 64	1 64	0	2 64

Find—

- (i) P(X 1, Y 2);
- (ii) P(X 1);

(iii) P(X 3).

(b) A two-dimensional random variable (X, Y) has a joint probability mass function $p(x, y) = \frac{1}{27}(2x + y)$, where x and y can assume 0, 1 and 2 only. Find the conditional distribution of Y for X x.

5

5

6.	(a)	The joint	probability	density	function	of	а	$two\hbox{-}dimensional$	random
		variable (2							

f(x, y)
$$\begin{array}{c} 2, & 0 & x & 1, & 0 & y & x \\ 0, & \text{elsewhere} \end{array}$$

Find the—

- (i) marginal density functions of X and Y;
- (ii) conditional density function of Y given X = x;
- (iii) conditional density function of X given Y y.
- (b) The joint probability density function of a two-dimensional random variable (X, Y) is given by

$$f(x, y) = \begin{cases} 6x^2y, & 0 & x = 1, & 0 & y = 1 \\ 0, & \text{elsewhere} \end{cases}$$

- (i) Verify that $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} f(x, y) dxdy = 1$.
- (ii) Find P(X 1|Y 2).

UNIT—IV

7. Two random variables *X* and *Y* have the following joint probability density function :

$$f(x, y)$$
 2 x y, 0 x 1, 0 y 1
0, otherwise

Find the—

- (a) marginal probability density functions of X and Y;
- (b) conditional density functions;
- (c) Var(X) and Var(Y);
- (d) covariance between X and Y.

8. State and prove Chebyshev's inequality.

10

10

5

5

Unit-V

9. (a) F	For a Poisson	distribution,	prove that	r 1	r	r 1	$\frac{d}{d}$.	5
-----------------	---------------	---------------	------------	-----	---	-----	-----------------	---

- (b) Find the moment generating function of a normal distribution. 5
- **10.** (a) Find the moment generating function, mean and variance of a geometric distribution.
 - (b) If X and Y are independent Poisson variates such that $P(X \ 1) \ P(X \ 2)$ and $P(Y \ 2) \ P(Y \ 3)$, find the variance of $X \ 2Y$.

 $\star\star\star$