MATH/V/07

Student's Copy

2018

(Pre-CBCS) (5th Semester)

MATHEMATICS

SEVENTH PAPER

(MATH-353)

(Complex Analysis)

Full Marks : 75 *Time* : 3 hours

(PART : A—OBJECTIVE)

(*Marks*: 25) Answer **all** questions

SECTION—A

(*Marks* : 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

- **1.** For z_1 i and z_2 $\sqrt{3}$ i, the arg $(z_1 \ z_2)$ is equal to
 - (a) $\overline{3}$ \Box (b) $\frac{4}{3}$ \Box (c) $\frac{5}{6}$ \Box (d) $\overline{2}$ \Box
- **2.** The value of $(\sqrt{3} i)^3$ is
 - (a) i \Box (b) 8i \Box (c) 8i \Box (d) $4\sqrt{2}i$ \Box

/317

3. Which of the following is not harmonic function?

(a) $e^x(x\cos y \ y\sin y)$ \Box

(b)
$$\frac{1}{2}\log(x^2 y^2)$$
 \Box

- (c) $\sin x \cosh y$
- (d) $x^3 \quad 3xy^2 \qquad \Box$
- 4. The functions satisfying Laplace's equation are known as
 - (a) regular \Box
 - (b) homomorphic \Box
 - (c) harmonic \Box
 - (d) conjugate \Box
- 5. The series $\frac{z^n}{!n}$ is absolutely convergent for
 - (a) z = 0
 - (b) z = 0
 - (c) |z| = 1
 - (d) all values of z \Box
- **6.** If R_1 and R_2 are the radii of convergence of the power series $a_n z^n$ and $b_n z^n$ respectively, then the radius of convergence of the series $a_n b_n z^n$ is
 - (a) $R_1 \ R_2$ \square (b) $R_1 \ R_2$ \square

 (c) $\frac{R_1}{R_2}$ \square (d) $\frac{R_1 \ R_2}{2}$ \square
- 7. The value of $\overline{z} dz$ along a semicircular arc |z| 1 from 1 to 1 is
 - (a) i \Box (b) i \Box (c) i \Box (d) i \Box

MATH/V/07**/317**

[Contd.

8. A continuous arc without multiple point is called a

- (a) Jordan curve
- (b) continuous arc \Box
- (c) contour
- (d) rectifiable curve \Box

9. The function $f(z) = 3z^2 - 2z = 1$ has a singularity at infinity as a/an

- (a) removable singularity \Box
- (b) pole of order 2 \Box
- (c) essential singularity \Box
- (d) non-isolated singularity \Box

10. The function $f(z) = e^z$ has a singularity at infinity as a/an

- (a) removable singularity \Box
- (b) isolated essential singularity \Box
- (c) essential singularity \Box
- (d) non-isolated singularity \Box

SECTION-B

(Marks: 15)

Each question carries 3 marks

- **1.** Show that $\arg(z) \arg(\overline{z}) 2n$.
- **2.** Find the derivatives of w = f(z) in polar form.
- 3. Find the radius of convergence of the series

$$1 \quad \frac{1}{n} \quad x^n$$

- **4.** Evaluate $_L \overline{z} \, dz$ from z = 0 to z = 4 = 2i along the curve L defined by the line from z = 0 to z = 2i and then from z = 2i to z = 4 = 2i.
- **5.** Find the singularity of $\tan \frac{1}{z}$ at z = 0.

MATH/V/07/317

[Contd.

(**PART** : **B**—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer one question from each Unit

UNIT—I

- **1.** (a) For any two complex numbers z_1 and z_2 , show that $|z_1 \ z_2|^2 \ |z_1|^2 \ |z_2|^2$ if and only if $z_1\overline{z_2}$ is purely imaginary. 5
 - (b) Prove that the sum and product of two complex numbers are real if and only if they are conjugate to each other.
- **2.** (a) Find the equation in complex variable of all the circles which are orthogonal to $|z_1| = 1$ and $|z_1| = 1$. 5
 - (b) Find the region of the z-plane for which

$$\left| \frac{z \ a}{z \ \overline{a}} \right|$$
 1, 1 or 1

where the real part of a is always positive.

Unit—II

3. (a) State and prove Cauchy-Riemann equation for analyticity of a complex function.
(b) Determine the harmonic conjugate of u y³ 3x²y and find the corresponding analytic function f(z) in term of z.

4. (a) Show that
$$\frac{2}{x^2} = \frac{2}{y^2} = 4 \frac{2}{z \ \overline{z}}$$
 for any complex function. 5

(b) Examine the nature of the function

$$f(z) = \frac{x^2 y^5(x \ iy)}{x^4 \ y^{10}}, z = 0 \text{ and } f(0) = 0$$

in a region including origin.

MATH/V/07**/317**

[Contd.

5

5

5

UNIT-III

5. (a) Find the radius of convergence of the series

$$\frac{n\sqrt{2}}{1}\frac{i}{2n}z^n$$
5

(b) Find the domain of convergence of the series

$$\frac{(1)^{n-1}}{(2n-1)!}z^{2n-1}$$
5

6. (a) For what value of z, does the series $n = 1 \frac{1}{(z^2 - 1)^n}$ converge? 5

(b) Find the domain of convergence of the power series

$$\frac{1 \quad 3 \quad 5 \cdots (2n \quad 1)}{!n} \quad \frac{1 \quad z}{z}^{n} \qquad 5$$

UNIT—IV

7. (a) Evaluate
$$\frac{z}{L} = \frac{2}{z} dz$$
, where L is the semicircle $z = 2e^{it}$, $0 = t$. 4

(b) Let f(z) is an analytic function in a simple connected domain D bounded by a rectifiable curve C and is continuous in C. If a be any point of D, then show that

$$f(a) \quad \frac{1}{2 i} \frac{f(z)}{c(z a)} dz \qquad 6$$

8. (a) Show that
$$\frac{e^{xz} x^n}{c^{n!z^{n-1}}} dz = 2 i \frac{x^n}{!n}^2$$
. 5

(b) Using Cauchy integral formula, evaluate
$$\circ \frac{dz}{C^2 (z^2 - 4)}$$
, where C is curve $|z| = 1$.

MATH/V/07**/317**

[Contd.

Unit—V

9. (a) State and prove Taylor's theorem for complex function.
(b) Expand
$$\frac{z}{z(z^2 + z + 2)}$$
 for the region $|z| = 2$.
10. (a) Show that exp $\frac{c}{2}(z + z^{-1})$ can be expanded in the form $a_n z^n$ and
find the value of a_n .
(b) Examine the natures of singularities of the following functions :
(i) $\sin \frac{1}{1 + z}$ at $z = 1$
(ii) $\frac{1}{\sin z + \cos z}$ at $z = \frac{1}{4}$

* * *