MATH/V/06

Student's Copy

2018

(Pre-CBCS)

(5th Semester)

MATHEMATICS

SIXTH PAPER (MATH-352)

(Real Analysis)

Full Marks : 75 *Time* : 3 hours

(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Put a Tick \square mark against the correct answer in the box provided : $1 \times 10 = 10$

1. If every open cover of a set admits of a finite subcover, it is said to have the

- (a) Cantor's intersection property \Box
- (b) Heine-Borel property \Box
- (c) Lindelöf covering property \Box
- (d) None of the above \Box

2. A set is said to be compact, if it is both

(a)	bounded and closed	
(b)	bounded and open	
(c)	open and closed	
(d)	None of the above	

3. The range of a function continuous on a compact set is

(a) cover	
-----------	--

- (b) subcover \Box
- (c) compact \Box
- (d) None of the above \Box
- **4.** A function f(x, y) is said to be continuous, if it is continuous at

(a)	isolated point only \Box
(b)	each point of its domain \Box
(c)	some deleted neighbourhood of domain \Box
(d)	None of the above \Box
MATH/V	/06/316 2

5. If

$$\lim_{h \to 0} \frac{f(x \quad h, y) \quad f(x, y)}{h}$$

exists, it is called the partial derivative of f with respect to

- (a) x at (a, b) \Box
- (b) y at (a, b)
- (c) x at (x, y)
- (d) y at (x, y)
- **6.** If u = f(x, y) and v = g(x, y) have continuous partial derivatives in a region R, a necessary and sufficient condition that they satisfy F(u, v) = 0 is that the Jacobian
 - (a) $\frac{(u, v)}{(x, y)}$ F(u, v)
 - (b) $\frac{(u, v)}{(x, y)}$ 0
 - (c) $\frac{(x, y)}{(u, v)}$ 0
 - $(d) \quad \frac{(u, v)}{(x, y)} \quad 0 \qquad \Box$
- **7.** In \mathbb{R}^2 , if (a, b) be a point in the domain of a function f such that f_x and f_y are both differentiable at (a, b), then
 - (a) $f_{xy}(a, b)$ $f_{yx}(a, b)$ \Box (b) $f_{xy}(a, b)$ $f_{yx}(a, b)$ \Box (c) f_{xy} and f_{yx} do not exist at (a, b)(d) None of the above \Box

MATH/V/06/316

- **8.** When $AC B^2$ 0, where $A f_{xx}(a, b), B f_{xy}(a, b), C f_{yy}(a, b)$, then f is
 - (a) minimum at (a, b)
 (b) maximum or minimum at (a, b)
 (c) maximum at (a, b)
 (d) neither maximum nor minimum

9. Every compact subset of a metric space (x, d) is

- (a) closed \Box
- (b) open \Box
- (c) bounded \Box
- (d) both closed and bounded \Box
- **10.** If every Cauchy sequence of *X* converges to a point of *X*, then a metric space (*X*, *d*) is
 - (a) compact \Box
 - (b) interior \Box
 - (c) complete \Box
 - (d) closure \Box

$\mathrm{MATH}/\mathrm{V}/\mathrm{06}\textbf{/316}$

SECTION—B (Marks: 15)

Write short answers to the following questions : 3×5=15

1. Show that the union of an arbitrary family of open sets is open.

2. Define convex set and uniform continuity.

3. If $u_1 = \frac{x_2 x_3}{x_1}$, $u_2 = \frac{x_1 x_3}{x_2}$, $u_3 = \frac{x_1 x_2}{x_3}$, then prove that $J(u_1, u_2, u_3) = 4$.

4. Find the stationary points of the function $f(x, y) = x^3 = y^3 = 3x = 12y = 20$.

5. Prove that closed subsets of compact sets are compact.

(PART : B-DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions Answer **one** question from each Unit

UNIT—I

1. State and prove Cantor's intersection theorem. 2+8=10

2. State and prove Bolzano-Weierstrass theorem. 2+8=10

 $\mathrm{MATH}/\mathrm{V}/\mathrm{06}\textbf{/316}$

UNIT—II

- **3.** (a) Show that a function continuous on a compact domain is uniformly continuous. 6
 - (b) Show that the function

$$f(x, y) = \frac{xy}{\sqrt{x^2 y^2}}, (x, y) = (0, 0)$$

0, (x, y) (0, 0)

is continuous at the origin.

- **4.** (a) Let f be a real-valued continuous function with domain $D = R^n$. Let the domain D be such that x D, y D tx (1 t)y D, t [0, 1]. Show that the function f assumes every value between f(x) and f(y). 6
 - (b) Examine the continuity of the function $f(x, y) = \sqrt{|xy|}$ at the origin. 4

UNIT—III

- 5. (a) Prove that if a function which is differentiable at a point is also continuous at the point. 5
 - (b) Given

$$f(x, y) = \frac{xy}{x^2 y^2}, \text{ if } (x, y) \quad (0, 0)$$

0, if x y 0

6

Show that both the partial derivatives exist at (0, 0) but the function is 5 not continuous at (0, 0).

4

6. (*a*) If

$$u = \frac{x - y}{1 - xy}, v = \frac{(x - y)(1 - xy)}{(1 - x^2)(1 - y^2)}$$

then find $\frac{(u, v)}{(x, y)}$. Are they functionally related? If so, find the relationship.

(b) If $x r \sin \cos y r \sin \sin z r \cos$, then show that

$$\frac{(x, y, z)}{(r, ,)} r^2 \sin 4$$

- 7. State and prove Taylor's theorem.
- **8.** (*a*) Let

$$f(x, y) = \frac{xy(x^2 - y^2)}{x^2 - y^2}, (x, y) = (0, 0)$$

0, (x, y) (0, 0)

Show that f_{xy} f_{yx} at the origin.

(b) If
$$u = \frac{x - y}{1 - xy}$$
, $v = \frac{(x - y)(1 - xy)}{(1 - x^2)(1 - y^2)}$, then find $\frac{(u, v)}{(x, y)}$. 5

- **9.** Define compact metric space. Prove that every compact subset of a metric space is closed. 3+7=10
- 10. Define complete metric space. Let X be the set of all continuous real-valued functions define on [0, 1] and also let d(x, y) |x(t) y(t)|dt, x, y X. Show that (X, d) is not complete.

 $\mathrm{MATH}/\mathrm{V}/\mathrm{06}\textbf{/316}$

2+8=10

5