2018

(Pre-CBCS)

(5th Semester)

MATHEMATICS

FIFTH PAPER (MATH-351)

(Computer-oriented Numerical Analysis)

Full Marks: 75

Time: 3 hours

Simple calculator can be used in this paper

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Each question carries 1 mark

Put a Tick ☑ mark against the correct answer in the box provided :

1. Which of the following relations is true?

(a) E = 1

(b) 1 E \Box

(c) E

(d) None of the above \Box

2.	The value of 2y_0 is
	(a) y_2 y_1 y_0 \square
	(b) y_2 $2y_1$ y_0 \square
	(c) y_2 $2y_1$ y_0 \square
	(d) y_2 y_1 y_0 \square
3.	If $f(0) = 5$, $f(1) = 1$, $f(2) = 9$, $f(3) = 25$ and $f(4) = 55$, then $f(5)$ is
	(a) 105 \square
	(b) 115 \square
	(c) 125 \square
	(d) None of the above \Box
4.	If u_1 1, u_3 17, u_4 43 and u_5 89, then u_2 ?
	(a) 10 \Box
	(b) 15 \square
	(c) 6
	(d) 5 \square
5.	The system of equations a_1x a_2y a_3z d_1 ; b_1x b_2y b_3z d_2 ; c_1x c_2y c_3z d_3 is a diagonal system, if
	(a) $ a_1 a_2 a_3 $, $ b_1 b_2 b_3 $, $ c_1 c_2 c_3 $
	(b) $ a_1 a_2 a_3 $, $ b_2 b_1 b_3 $, $ c_3 c_2 c_1 $
	(c) $ a_1 $ $ a_2 $ $ a_3 $, $ b_2 $ $ b_1 $ $ b_3 $, $ c_3 $ $ c_2 $ $ c_1 $
	(d) None of the above \Box

6.	In Gauss elimination method for solving system of equation $AX B$, the matrix A is reduced to					
	(a) upper triangular matrix					
	(b) lower triangular matrix \Box					
	(c) diagonal matrix \Box					
	(d) None of the above \Box					
7.	In the general quadrature formula, Simpson's one-third rule is obtained by putting					
	(a) $n 1 \Box$					
	(b) $n = 2 \qquad \square$					
	(c) $n 3 \square$					
	(d) $n + 4 \qquad \square$					
8.	The value of $\int_{0}^{4} \frac{dx}{1 + x^2}$ is					
	(a) $0 \qquad \Box$					
	(b) 1					
	(c) 2 \Box					
	(d) None of the above \Box					
9.	Euler's method is the Runge-Kutta method of					
	(a) first order \Box					
	(b) second order \Box					
	(c) third order \Box					
	(d) None of the above \Box					

10.	For solving ordinary differential equation numerically, the most reliable and most accurate among the following is
	(a) Taylor's method \Box
	(b) Picard's method \Box
	(c) Euler's method \Box
	(d) Runge-Kutta method \Box
	SECTION—B
	(<i>Marks</i> : 15)
	Each question carries 3 marks
	Answer all questions
1.	Prove that $E = E^{\frac{1}{2}}$, where $E = E^{\frac$
2.	Show that the divided differences are independent of the order of arguments, i.e., (x_0, x_1) (x_1, x_0) .
3.	Solve the given equations by Gauss elimination method $x \ y \ 2; \ 2x \ 3y \ 5$.
4.	Compute the value of $\frac{2}{1} \frac{dx}{x}$ using Simpson's $\frac{1}{3}$ rd rule.
5.	Using Runge-Kutta method of second order, find y (10) for the differential equation $\frac{dy}{dx}$ xy y^2 , t (0) 1.

4

[Contd.

MATH/V/05**/315**

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

The figures in the margin indicate full marks for the questions

Answer **five** questions, selecting **one** from each Unit

Unit—I

- **1.** (a) Express $y = 2x^3 3x^2 3x = 10$ in factorial notation and hence show that y = 12.
 - (b) (i) Construct a divided difference table for the following data:

X: 1 2 4 7 12 F(x): 22 30 82 106 216

(ii) Prove that

$$\frac{1}{2}(E^{\frac{1}{2}} \quad E^{\frac{1}{2}})$$

where is the average operator and E is shift operator.

- **2.** (a) Find a root of the equation x^3 4x 9 0, using the bisection method correct up to 3 decimal places.
 - (b) Write an algorithm for finding the root of an equation by regula falsi method.

UNIT—II

- **3.** (a) Derive Newton's forward interpolation.
 - (b) The table gives the distance in nautical miles of the visible horizon for the given height in feet above the Earth's surface :

X height: 100 150 200 250 300 350 400

Y distance: 10.63 13.03 15.04 16.81 18.42 19.90 21.27

Find the values of Y, when (i) X = 218 ft and (ii) X = 410 ft.

5

5

5

5

5

4.	(a)	State and prove Newton's divided difference formula.	5
	(b)	Using Lagrange's interpolation formula for unequal interval, find the values of $f(2)$ and $f(15)$ from the following data :	5
		X : 4 5 7 10 11 13	
		f(x): 48 100 294 900 1210 2028	
		Unit—III	
5.	(a)	Apply Gauss elimination method to solve the equations	
		x + 4y + z = 5; x + y + 6z = 12; 3x + y + z = 4	5
	(b)	By Crout's method, solve the system $2x$ $3y$ z 1 ; $5x$ y z 9 ; $3x$ $2y$ $4z$ $11.$	5
6.	(a)	Apply Gauss-Jordan method to solve the equations x y z 9; $2x$ $3y$ $4z$ 13 ; $3x$ $4y$ $5z$ 40 .	5
	(b)	Write an algorithm for Gauss-Seidel interactions method.	5
		Unit—IV	
7.	(a)	Derive the formula for finding first- and second-order derivatives using Newton's forward difference formula.	5
	(b)	Given that	
		X : 1.0 1.1 1.2 1.3 1.4 1.5 1.6	
		Y : 7.989 8.403 8.781 9.129 9.451 9.750 10.031	
		Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at (i) x 11 and (ii) x 16.	5
8.	(a)	Derive Newton-Cotes quadrature formula.	5
	(b)	Use Simpson's $\frac{1}{3}$ rd rule to find $\int_{0}^{0.6} e^{-x^2} dx$ by taking seven ordinates.	5

UNIT-V

- **9.** (a) Using Picard's process of successive approximations, obtain a solution up to the fifth approximation of the equation $\frac{dy}{dx} y x$ such that y 1, when x 0. Check your answer by finding the exact practical solution.
 - (b) Find the values of y at x = 0.1 and x = 0.2 to five decimal places from $\frac{dy}{dx} = x^2y = 1$, y(0) = 1 by Taylor's series method.
- **10.** (a) Apply Runge-Kutta method to find approximate value of y for x = 0.2, in steps of 0.1, if $\frac{dy}{dx} = x = y^2$, given that y = 1 where x = 0.
 - (b) Using Milne's predictor-corrector method, find y (4 4) given 5xy y^2 2 0, given that y (4) 1, y (4 1) 1 0049, y (4 2) 1 0097 and y (4 3) 1 0143.

* * *

5

5