ECO/V/CC/07

Student's Copy

2019

(CBCS)

(5th Semester)

ECONOMICS

SEVENTH PAPER

(Quantitative Techniques—I)

Full Marks : 75

Time : 3 hours

Simple calculator can be used in this paper

(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :	1×10=10
---	---------

1. A cubic function may be used to describe

- (a) marginal revenue in a perfect competition ()
- (b) a trade cycle ()
- (c) average fixed cost ()
- (d) None of the above ()

/87

2. A set which contains all the elements in question is

- (a) null set or empty set ()
- (b) finite set ()
- (c) universal set ()
- (d) equivalent set ()

3. The sufficient condition (second-order condition) for maximum value is

(a)
$$\frac{d^2 y}{dx^2} = 0$$
 ()
(b) $\frac{d^2 y}{dx^2} = 0$ ()
(c) $\frac{d^2 y}{dx^2} = 0$ ()
(d) $\frac{d^2 y}{dx^2} = 0$ ()

4. If the minimum of AC is equal to 120, then MC will be

- *(a)* 60 ()
- *(b)* 150 ()
- *(c)* 120 ()
- (d) 0 ()

5. The integration of the exponential function (e^x) is

(a) $\log x \ c$ () (b) $e^x \ c$ () (c) $1 \ e$ () (d) e^x ()

ECO/V/CC/07**/87**

6. Integration of any given marginal cost function will yield

- (a) total cost function ()
- (b) average cost function ()
- (c) demand function ()
- (d) slope of the average cost ()

7. The necessary condition for a square matrix A to possess an inverse is

- (a) |A| 0 ()
- (b) |A| 0 ()
- (c) |A| = 0 ()
- (d) |A| 0 ()

8. The determinant of a matrix equals

- (a) the determinant of its transpose ()
- (b) the transpose of its determinant ()
- (c) the inverse of its determinant ()
- (d) the transpose of the inverse ()
- **9.** Which of the following is not an assumption of linear programming problems?
 - (a) Linearity ()
 - (b) Negativity ()
 - (c) Well-objective function ()
 - (d) Divisibility ()

10. The optimal solution of all linear programmes are found at

- (a) outside the feasible region ()
- (b) the middle of the feasible region ()
- (c) the lowest point of the feasible region ()
- (d) the extreme points ()

ECO/V/CC/07/87

SECTION—B

(Marks: 15)

Answer the following questions :

 $3 \times 5 = 15$

1. (a) Name any three uses of quadratic functions in economics.

OR

- (b) Distinguish between null and universal sets.
- **2.** (a) Explain the differentiability of a function.

OR

- (b) Mention the relationship between marginal revenue and average revenue.
- **3.** (a) Distinguish between integrand and integral.

OR

- (b) If P = 10, Q = 5 and f(Q) dQ = 42, then how much is the producer's surplus?
- 4. (a) What is the transpose of a matrix?

OR

- (b) What is an identity matrix?
- 5. (a) Explain the meaning of linear programming.

Maximize

OR

(b) Formulate dual of the given linear programming problem :

subject to constraints

ECO/V/CC/07/87

(PART : B—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

1. (a) Distinguish between equal set and equivalent set. 4 (b) Verify the distributive law of union and intersection by using the following sets : 4 A $\{4, 5, 6\}, B \{3, 4, 6, 7\}$ and C $\{2, 3, 6\}$ (c) In a class of 50 students, 25 students take Economics, 20 students take Mathematics and 5 take both. Find the number of students taking neither of the two subjects. 2 OR **2.** (a) What is the difference between dependent and independent variables? 4 (b) Given $S_1 \{3, 6, 9\}$, $S_2 \{9, 4\}$ and $S_3 \{m, n\}$. Find the Cartesian product $S_1 \quad S_2 \quad S_3$. 3 (c) If the supply and demand functions for a commodity are Q_d 51 3Pand Q_s 6P 10 respectively, then find the equilibrium price. 3 **3.** (a) Find $\frac{dy}{dx}$ from the following functions (any *three*) : 2×3=6 (i) $y (2x^2 - 3)(4x - 1)$ (*ii*) $y (2x^2 - 3x)^5$ (*iii*) $y = \frac{x^2}{2} \frac{1}{x}$ (iv) y 2at and x t^2 1 (b) Find the partial derivatives of the following (any two) : $2 \times 2 = 4$ (i) z (6x 7y) / (5x 3y)(*ii*) $z (3x \ 5)(2x \ 6y)$ (iii) $z 2x^2 3xy 40y^2 100$

ECO/V/CC/07/87

5

OR

- **4.** (a) Given the revenue function of a firm R 4000Q 33 Q^2 and the total cost function C 2 Q^3 3 Q^2 400Q 500. Find the profit maximizing level of output.
 - (b) A firm's revenue function is given as $TR = 12Q = Q^2$. Find the marginal revenue and average revenue function. 3
 - *(c)* Describe the necessary and sufficient conditions for maximization and minimization.

OR

- **6.** (a) If the demand function is $p = 35 = 2x = x^2$ and the demand x_0 is 3, then what will be the consumer's surplus?
 - (b) The supply and demand function are given as P_s 15 9x and P_d $3x^2$ 20x 5 respectively. Find the producer's surplus. 6
- 7. (a) Given A $\begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \end{pmatrix}$ and B $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. Find the product of the two $\begin{pmatrix} 0 & 2 \end{pmatrix}$ matrices. 3

ECO/V/CC/07/87

6

[Contd.

3

4

4

(b) Solve the following equations by matrix inversion method :

OR

8. (a) If $A = \begin{bmatrix} 3 & 1 \\ 4 & 2 \end{bmatrix}$, then prove that $A^{-1}A = 1$.

(b) Solve the following simultaneous equations by Cramer's rule : 6

9. Use graphical method to solve the linear programming problem. Also indicate the feasible region : 8+2=10

$$5x_1 \quad x_2 \quad 10$$

$$x_1 \quad x_2 \quad 6$$

$$x_1 \quad 4x_2 \quad 12$$
and
$$x_2, x_2 \quad 0$$

OR

10. What is meant by dual? Discuss various procedures involved in the formulation of linear programming problem. 2+8=10

* * *

ECO/V/CC/07**/87**

4

7