CHEM/VI/11

2018

(6th Semester)

CHEMISTRY

ELEVENTH PAPER (CHEM-363)

(Physical Chemistry—III)

Full Marks : 55

Time : $2\frac{1}{2}$ hours

(PART : A—OBJECTIVE)

(*Marks* : 20)

The figures in the margin indicate full marks for the questions

Tick	ick (\checkmark) the correct answer in the brackets provided :													$1 \times 5 = 5$
1.	• The unit of molar absorption coefficient () is													
	(a)	mo	$1 dm^3 cm^3$	m ¹		()		(b)	mo	$1 \mathrm{dm}^3$ cm 1		()
	(c)	mo	ol dm ³ cm	L	()			(d)	mo	$1 \ ^1 \text{ dm}^3 \text{ cm}$		()
2.	When $\binom{*}{n}m$ 1, the eigenfunctions are													
	(a)	dia	ıgonal	()				(b)	ort	hogonal	()	
	(c)	art	oitrary	()				(d)	no	rmalized	()	
3.	The relationship between entropy and thermodynamic probability is given by													
	(a)	k	$S\ln W$	()				(b)	S	$W \ln k$	()	
	(c)	S	klnW	()				(d)	W	$k \ln S$	()	

/500

[Contd.

4. The molecule which is IR inactive but Raman active is

 (a) protein
 ()
 (b) N_2 ()

 (c) HCl
 ()
 (d) SO_2 ()

5. The relationship between free energy change and e.m.f. of a cell is given by

(a)G nFE() (b)G nFE () nFE (c)G nFE () (d)G () SECTION-B (Marks: 15)

Answer the following questions :

- 1. What is photosensitization? Write all the steps involved in photosensitized reaction between $H_2(g)$ and $O_2(g)$.
- 2. State and explain photoelectric effect.
- **3.** Derive the multiplication theorem of partition function.
- **4.** Calculate J_{max} for a rigid diatomic molecule at 27 °C for which rotational constant is 1.566 cm⁻¹.
- **5.** Set up calomel electrode and give electrode reactions and e.m.f. of such an electrode.

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

- **1.** (a) Define quantum yield.
 - (b) State and explain Stark-Einstein law of photochemical equivalence. $3\frac{1}{2}$
 - (c) A monochromatic radiation is incident on a solution of 0.05 M concentration of an absorbing substance. The intensity of radiation is reduced to $\frac{1}{4}$ th of its initial value after passing through 100 mm length of the solution. Calculate the molar extinction coefficient of the substance. $2\frac{1}{2}$

OR

2. (a) Discuss the photochemical reaction involving decomposition of acetaldehyde. 3

2

CHEM/VI/11/500

3×5=15 zed

[Contd.

1

- (b) Complete the following photochemical reaction : UO_2^2 H₂C₂O₄ $\begin{pmatrix} h \\ 250 & 440 \text{ nm} \end{pmatrix}$ UO₂² ...
- (c) A certain system absorbs 3 10^{18} quanta of light per second. On irradiation of 20 minutes, 0.003 mole of reactant was found to have reacted. Calculate the quantum yield of the process. 2
- **3.** (a) Discuss in detail the Einstein's theory of heat capacity of monoatomic solids. $3\frac{1}{2}$
 - (b) Give expression for zero point energy.
 - (c) A photon of wavelength 3000 Å strikes a metal surface, the work function of the metal being 2.13 eV. Calculate—
 - (i) the energy of the photon in electron volt (eV);
 - (ii) kinetic energy of the emitted photon.

OR

- **4.** (a) Derive Schrödinger wave equation and extend it up to Hamiltonian operator.
 - (b) A particle with a mass 6.65×10^{27} kg is confined in an infinite square well of width *a*. The energy of 3rd level is 2×10^{24} J. Calculate *a*. 3
- **5.** (a) Derive an expression for the molecular translational partition function of an ideal gas. $3\frac{1}{2}$
 - (b) Calculate the characteristic vibrational temperature and the vibrational partition function for $H_2(g)$ molecule at 2727 °C, the fundamental vibrational frequency of $H_2(g)$ is given to be 4405.3 cm⁻¹. $3\frac{1}{2}$

OR

- 6. (a) On the basis of molecular partition function, derive expression for entropy of a monoatomic ideal gas.3
 - (b) Write expression only for molar heat capacity at constant volume in terms of molecular partition function.
 - (c) Calculate the translational entropy of I₂(g) molecule in calories at 27 °C and 1 atm. (Molecular mass of I₂ 254)
 3

[Contd.

2

 $2\frac{1}{2}$

1

- **7.** (*a*) Using the energy level expression and the appropriate selection rule, discuss the energy level diagram and the spectral transitions for a pure rotational (microwave) spectrum of a rigid diatomic rotor.
 - (b) Calculate the vibrational frequency in cm¹ and the spacings between the vibrational energy levels in eV in case of CO whose force constant is 1840 Nm¹. (C 19·9×10²⁷ kg, O 26·6×10²⁷ kg and 1 eV = 8066 cm¹.)

OR

- **8.** (*a*) Discuss the classical theory of Raman spectroscopy and show how Stokes and anti-Stokes lines appear in the Raman spectrum of a molecule.
 - (b) Spacing between lines in a microwave spectra of HI is 13.2 cm^{-1} . Calculate the bond length of HI. (H 1 10⁻³ kg mol⁻¹ and I 127 10⁻³ kg mol⁻¹)

- **9.** (a) Establish relationship between the e.m.f. and equilibrium constant (k) for a general reversible cell reaction.
 - (b) Give only expression for enthalpy and e.m.f. of a cell reaction.
 - (c) Write the cell reaction and calculate e.m.f. of the cell Fe, Fe² $(0.1 M)/Cd^2$ (0.001 M), Cd [Given : $E^{\circ}(Cd^2 / Cd) = 0.40 V$ and $E^{\circ}(Fe^2 / Fe) = -0.44 V$]
 - OR
- **10.** (a) What are concentration cells? Derive an expression for e.m.f. of a concentration cell with transference. $1+3\frac{1}{2}=4\frac{1}{2}$
 - (b) Calculate G° and S° for the cell Cd(Hg), $CdSO_{4} \frac{8}{3}H_{2}O(s) / / CdSO_{4}(satd)$, $Hg_{2}SO_{4}(s)$, Hgif $\frac{E^{\circ}}{T}$ for the cell is 5 10 ⁵ V K ¹. (Given E° 1.0183 V). [Physical constants : H = 6.626×10 ³⁴ J-s; N_{A} 6.022×10²³ mol ¹] 2¹/₂

CHEM/VI/11/500

8G—170

4

3

3

2

2

3

1

3