Student's Copy

2018

(6th Semester)

CHEMISTRY

NINTH PAPER (CHEM-361)

(Organic Chemistry—III)

Full Marks: 55

Time: 2½ hours

(PART : A—OBJECTIVE)

(*Marks*: 20)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks*: 5)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 5 = 5$

- Phosphorescence is a relaxation from

 (a) triplet to a singlet state
 (b) singlet to a singlet state
 (c) triplet to a triplet state
 (d) None of the above

 Diels-Alder reaction is
 - (a) [2 2] cycloaddition reaction ()
 - (b) [4 2] cycloaddition reaction ()
 - (c) electrocyclic reaction ()
 - (d) None of the above ()
- 3. Reaction of organolithium compounds with ketones in acid medium gives
 - (a) aldehydes ()
 - (b) amines ()
 - (c) alcohols ()
 - (d) carboxylic acids ()

4.	Hofmann elimination is an example of	
	(a) IR-assisted reaction ()	
	(b) UV-assisted reaction () (c) microwave-assisted reaction ()	
	(d) All of the above ()	
5.	In ethanol, there are different types of protons.	
	(a) 2 (b) 3 ()	
	(c) 4 () (d) 5 ()	
	SECTION—B	
	(<i>Marks</i> : 15)	
Ans	wer the following questions :	3×5=15
1.	Explain Norrish type-II cleavage.	
2.	Based on FMO method, discuss photo-induced cyclization 1,4-dimethyl-1,3-butadiene.	of
3.	Explain the advantage of organolithium compounds in hindered carbo	nvl
	groups with example.	3 -
4.	Discuss Green method for Wittig reaction with suitable example.	
5.	Discuss the basic principle of NMR spectroscopy.	
	(PART : B—DESCRIPTIVE)	
	(<i>Marks</i> : 35)	
	The figures in the margin indicate full marks for the questions	
1.	(a) Discuss the following with suitable example:	3
	(i) Paterno-Buchi reaction	
	(ii) Norrish type-I cleavage	0
	(b) Explain Jablonski diagram.	3
	(c) What is Franck-Condon principle? OR	1
2.	(a) Explain the following in brief:	4
	(i) Singlet and triplet states	
	(ii) Quantum yield	
	N. W. 100 1400	1.6
CHE	M/VI/09 /498 2	[Contd.

- (b) Complete the following reactions:
 - (i) $h \rightarrow 3$
 - (ii) CH_3 — CH_2 —C— CH_3 h ?
 - (iii) \bigcap_{h} ?
- **3.** (a) Discuss the electrocyclic interconversion of cyclohexadiene-hexa-triene system using Woodward-Hofmann rule.
 - (b) Explain why $\begin{bmatrix} 2 & 2 \\ s \end{bmatrix}$ cycloaddition reaction is thermally forbidden but photochemically allowed.
 - (c) What are dienes and dienophiles?

OR

4. (a) Give the product(s) with proper stereochemistry in the reactions below:

 $2 \times 2 = 4$

3

3

2

(i)
$$H_3C H_3C H \longrightarrow ?$$

(ii)
$$H_3C$$
 H H CH_3 \xrightarrow{h} ?

(b) Complete the following reactions: $1\frac{1}{2} \times 2=3$

(i)
$$\downarrow$$
 + \parallel COOCH₃ \rightarrow ?

5. (a) Discuss the synthesis of the following with chemical reactions: $2 \times 2 = 4$ (i) Thiol (ii) Sulphaguanidine (b) Write all the possible conformers of 1,3-disubstituted cyclohexane. Which conformer is the most stable and why? 3 OR **6.** (a) Complete the following reactions: $1\frac{1}{2} \times 2 = 3$ (i) $C_2H_5SH + H_3C - C - C1 \longrightarrow ?$ SO_3H + $SOCl_2 \longrightarrow ?$ (b) What is conformation? Discuss 1,3-diaxial interaction in case of 1,3-dimethyl cyclohexane. 3 (c) Write one preparation of thioether. 1 7. (a) Write the mechanism for the Bayer-Villiger oxidation using suitable 3 example. Discuss migratory aptitude. (b) Write the 12 basic principles of Green chemistry. 4 OR **8.** (a) Discuss the preparation of butyraldehyde from Green preparation 3 process. (b) Discuss Green method for aldol condensation with suitable example. 3 (c) What is biochemical oxidation? 1 **9.** (a) Explain the following in brief: $2 \times 2 = 4$ (i) Metastable ion (ii) Chemical shift (b) Predict the chemical shift for acetaldehyde and acetophenone. 2 (c) Sketch the ¹H NMR signal for toluene. 1 OR **10.** (a) When 2-methylbutane is bombarded with high energy electron, it got fragmented and gave m/z values at 71, 57 and 43. Determine the fragmented structure. 3 (b) Write a short note on shielding and deshielding in NMR spectra. 2 Discuss the ¹H NMR spectra of ethyl acetate with their chemical shift

* * *

values.

2

8G-170