CHEM/VI/CC/20

Student's Copy

2019

(CBCS)

(6th Semester)

CHEMISTRY

ELEVENTH PAPER

(Physical Chemistry—III)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. A photochemical reaction takes place by the absorption of

- (a) visible and ultraviolet radiation ()
- (b) infrared radiation ()
- (c) heat energy ()
- (d) -rays ()

/643

[Contd.

1×10=10

2. One einstein is the energy associated with

- (a) one molecule ()
- (b) one photon ()
- (c) Avogadro number of photons ()
- (d) Faraday number of photons ()
- **3.** When n m d = 0, the eigenfunctions are
 - (a) arbitrary ()
 - (b) diagonal ()
 - (c) normalized ()
 - (d) orthogonal ()
- **4.** The zero point energy for a particle in a one-dimensional box is given by

(a)
$$\frac{n^2 h^2}{8ma^2}$$
 ()

(b)
$$\frac{n^2}{8ma^2}$$
 ()

(c)
$$\frac{2h^2}{8ma^2}$$
 ()

(d)
$$\frac{4h^2}{8ma^2}$$
 ()

CHEM/VI/CC/20/643

5. As temperature increases, partition function

- (a) increases ()
 (b) decreases ()
 (c) remains the same ()
 (d) increases or decreases ()
- 6. The electronic partition function of H atom in the ground electronic state is
 - (a) 4 ()
 - *(b)* 2 *(*)
 - (c) 1 ()
 - (d) 0 ()
- 7. Which of the following molecules will show a pure rotational spectrum?
 - (a) H₂ ()
 - (b) CO₂ ()
 - (c) HC1 ()
 - (d) N_2 ()

CHEM/VI/CC/20/643

8. The wave number range of IR radiation is

- (a) 500 cm 1 4000 cm 1 ()
- (b) 4000 cm 1 8000 cm 1 ()
- (c) $100 \text{ cm}^{-1} 1000 \text{ cm}^{-1}$ ()
- (d) 500 cm 1 1000 cm 1 ()
- **9.** The activity coefficient and molality of an electrolyte are related by the expression
 - (a) a m/(()
 - (b) a m ()
 - (c) a ^m ()
 - (d) a m ()

10. A voltaic cell has an E° value of -1.00 V. The reaction

- (a) is spontaneous ()
- (b) has a positive G° ()
- (c) has a negative G° ()
- (d) has K 1 ()

CHEM/VI/CC/20/643

SECTION-B

(Marks: 15)

Answer the following questions :

1. Distinguish between thermal and photochemical reactions.

OR

- 2. Write a short note on chemiluminescence.
- **3.** Describe Planck's quantum theory of radiation.

OR

- A photon of wavelength 4000 Å strikes a metal surface, the work function of the metal being 2.13 eV. Calculate the energy of the photon in eV. (Mass of electron 9 109 10 ³¹ kg)
- 5. What is the physical significance of partition function?

OR

- **6.** Discuss the multiplication theorem of partition function.
- **7.** Describe briefly the Born-Oppenheimer approximation of molecular energies.

OR

- 8. What are the conditions of getting IR spectra of a diatomic molecule?
- 9. Differentiate between reversible and irreversible electrochemical cells.

OR

10. What is meant by activity coefficient of an electrolyte? Write the expression to calculate the activity coefficient of Na_2SO_4 .

CHEM/VI/CC/20/643

[Contd.

 $3 \times 5 = 15$

(**PART : B**—DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

1. (a) What are photosensitized reactions? Give one example. 3 (b) What are meant by quantum energy and Einstein energy? State Einstein's law of photochemical equivalence. 4 (c) When a substance A was exposed to light, 0.002 mol of it reacted in 20 minutes and 4 seconds. At the same time A absorbed 2 0 10^6 photons of light per second. Calculate the quantum yield of the reaction. 3 OR **2.** (a) What are the causes of low- and high-quantum yields? 4 (b) State and derive Beer-Lambert law for light absorption by solution. 3 (c)Describe the photochemical decomposition of acetaldehyde. 3 5 **3.** (a) Derive Schrödinger wave equation. (b) An electron is confined in a one-dimensional box of length 1 Å. Calculate the ground-state energy in electron-volt. 2 Describe the black-body radiation. 3 (c)OR **4.** (a) Derive an expression for the energy of a particle in a one-dimensional box. 5 (b) Write Schrödinger wave equation for hydrogen atom in polar coordinates. Separate the resultant equation into three equations using the techniques of separation of variables. 4 (c) What is photoelectric effect? 1

CHEM/VI/CC/20/643

6

	. ,	having a total energy E.	5	
	(b)	Calculate the vibrational partition function for Br_2 at 300 K, if the vibrational frequency is 151.2 cm ⁻¹ .	2	
	(c)	Write the expressions for Helmholtz free energy and entropy in terms of partition function.	3	
	OR			
6.	(a)	Derive an expression for the molecular rotational partition function of an ideal diatomic gas.	4	
	(b)	Show that the internal energy of a system of N independent particles is given by $U = nRT^2 - \frac{\ln q}{T} \frac{1}{V}$.	4	
	(c)	Calculate the translational partition function of a molecule of oxygen gas at 1 atm and 298 K moving in a vessel of volume 24.4 dm ³ .	2	
7.	(a)	What do you mean by zero-point energy? What is the difference between zero-point energy of a harmonic oscillator and an anharmonic oscillator?	3	
	(b)	Derive an expression for the rotational energy of a rigid diatomic rotor.	4	
	(c)	Discuss the rule of mutual exclusion principle, taking $\rm CO_2$ as an example.	3	
	OR			
8.	(a)	State Raman effect. What are Stokes and anti-Stokes lines?	2	
	(b)	Explain the following terms : 1+1	=2	
		(i) Fundamental vibrational frequency		
		(ii) Hot bands		

5. (a) Derive Boltzmann distribution law for a system containing n molecules

7

- (c) The pure rotational spectrum of gaseous HCl consists of a series of equally spaced lines separated by 20.08 cm⁻¹. Calculate the internuclear distance of the molecule. The atomic masses are ¹H 1 673 10⁻²⁷ kg and ³⁵Cl 58 06 10⁻²⁷ kg. 3
- (d) Write notes on the following : $1\frac{1}{2}+1\frac{1}{2}=3$
 - (i) Fluorescence
 - (ii) Phosphorescence
- **9.** (a) Derive Nernst equation for describing the effect of concentration of electrolyte on electrode potential. 5
 - (b) What is liquid junction potential?
 - (c) Calculate equilibrium constant of the cell reaction $2Ag Zn 2Ag Zn^2$ occurring in the zinc-silver cell at 25 °C, when $[Zn^2] 0 10 M$ and [Ag] 10 M. The e.m.f. of the cell is found to be 1.62 V.

OR

- 10. (a) What are concentration cells? Derive an expression for the e.m.f. of a concentration cell with transference.
 - (b) What are redox titrations? Illustrate giving a suitable example how the titrations are carried out potentiometrically.
 - (c) Find the pH of a solution placed in a hydroquinone half-cell which was coupled with standard Calomel electrode. The e.m.f. of the combined cell is 0.123 V at 25 °C. (Given : E_Q° 0 6996 V and $E_{Calomel}$ 0 2415 V)

8

CHEM/VI/CC/20**/643**

2

3

3

3