Student's Copy

2019

(CBCS)

(6th Semester)

CHEMISTRY

NINTH PAPER

(Inorganic Chemistry—III)

Full Marks: 75

Time: 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks*: 10)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 10 = 10$

- 1. Which one of the following is not an organometallic compound?
 - (a) CH_3MgBr ()
 - (b) $A1(OCH_3)_3$ ()
 - (c) $(C_2H_5)_4Pb$ ()
 - (d) $(CH_3)_2SnCl_2$ ()

2.	The	e hybridization of carbon in the bridging carbonyl group is
	(a)	sp^3d ()
	(b)	sp^3 ()
	(c)	sp^2 ()
	(d)	sp ()
3.	In (deoxyhemoglobin, iron is present as
	(a)	both Fe^2 and Fe^3 ()
	(b)	Fe ³ ()
	(c)	Fe ⁰ ()
	(d)	Fe ² ()
4.	Ino	rganic rubber is
	(a)	polyphosphonitrilic chloride ()
	(b)	silicone rubber ()
	(c)	natural rubber ()
	(d)	polyurethane ()

5.	In	inner-	transit	ion e	leme	nts,	the	di	ffere	ntiat	ing	elec	tron	ente	ers			
	(a)	valen	ice sh	ell	()												
	(b)	penu	ltimat	e she	11	()											
	(c)	antip	enulti	mate	shel	1	()									
	(d)	All of	f the a	above		()											
6.		ich of our?	the f	ollowi	ng p	oairs	of	ior	n will	l no	t be	exp	ecte	d to	sho	ow sa	ıme	
	(a)	Ce ³	and '	Yb ³		()											
	(b)	Pm ³	and	Tm ³		()											
	(c)	Sm^3	and	Dy ³		()											
	(d)	Eu ³	and '	Гb ³		()											
7.	The	e relat	ive ma	ıgneti	c pe	rmea	abilit	ty	of di	ama	gnet	tic s	ubst	ance	is			
	(a)	sligh	tly les	s tha	n 1		()										
	(b)	equa	l to 0		()												
	(c)	equa	l to 1		()												
	(d)	sligh	tly lar	ger th	nan i	1	()									
CHE	M/V	I/CC/1	.6 /641						3								[Con	ntd.

	(a)	indepe applied			n tempei	rature an	nd stren	gth of	magnetic :	field
	(b)	depend		of both	tempera	iture and	d streng	gth of 1	magnetic :	field
	(c)	depend			strength)	of magn	etic field	l applie	d but not	on
	(d)	dependent on temperature but not on the strength of magnetic field applied ()								
9.	The	numb	er of	normal n	nodes of	vibration	for SO ₂	molecu	le is	
	(a)	3	()						
	(b)	4	()						
	(c)	5	()						
	(d)	6	()						
10.	. Which one of the following is correct with respect to the M-X stretching frequencies of bridging ($_b$) and terminal ($_t$) M-X bonds in the bridging metal-halogen compounds?									
	(a)	_b are	gen	erally low	er than	t ()			
	(b)	_b are	gen	erally hig	her than	t ()			
	(c)	_b are	gen	erally equ	al to t	()			
	(d)	_b ma	y be	lower or	higher tl	nan _t	()			
CHE	M/VI	/CC/16	/641			4				[Contd.

8. The paramagnetism in substances is

SECTION—B

(*Marks* : 15)

Answer the following questions:

 $3 \times 5 = 15$

1. Write a brief note on non-classically bonded organometallic compounds.

OR

- **2.** What are metallic carbonyls? Why is the metallic atom present in low oxidation state in metallic carbonyls?
- **3.** Draw the structure of heme group and explain how it is coordinated with the polypeptide chain in hemoglobin.

OR

- **4.** What are condensation polymers? Give examples.
- 5. Point out at least three similarities of lanthanides and actinides.

OR

- **6.** Give reasons why separation of lanthanides is difficult.
- 7. How do you deduce magnetic moment from magnetic susceptibility?

OR

- **8.** Write the properties of ferromagnetic substances.
- 9. What do you understand by Raman shifts?

OR

10. Point out three similarities and three dissimilarities between Raman spectroscopy and Infrared spectroscopy.

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

The figures in the margin indicate full marks for the questions

1.	(a)	Give one method of preparation and two applications of Grignard reagent in the preparations of alcohols.	3
	(b)	Explain the hybridization of the central atom and structure of $Ni(CO)_4$.	3
	(c)	Discuss Dewar-Chatt-Duncanson model of metal-alkene bonding.	4
		OR	
2.	(a)	Discuss briefly the applications of alkyl and aryl borons in organic synthesis.	3
	(b)	Explain different types of bonds found in mononuclear metallic carbonyls.	3
	(c)	How will you prepare $Fe_2(CO)_9$? Draw its structure and explain how the bridging carbonyl groups are bonded to iron atoms. 1+1+2	=4
3.	(a)	Discuss the mechanism for the hydrolysis of peptide bond by carboxypeptidase.	3
	(b)	Briefly explain the functioning and importance of Na - K pump.	3
	(c)	Explain the cooperativity effect in hemoglobin.	4
		OR	
4.	(a)	Point out at least six properties of inorganic polymers.	3
	(b)	Discuss the structure of $(NPCl_2)_3$.	3
	(c)	What are silicones? Discuss the method of preparation of a linear (tetramer) silicone. 1+3	=4
CHE	M/V	I/CC/16 /641 6 [Con	ıtd.

Э.	(a)	Write a brief note on the colour of M° actinide ions.	3
	(b)	Compare the tendency of complex formation in lanthanides and actinides.	3
	(c)	What is lanthanide contraction? Write three of its direct consequences.	=4
		OR	
6.	(a)	Give reasons why the magnetic moments of lanthanides cannot be obtained from the spin-only formula.	3
	(b)	Compare different oxidation states shown by lanthanides and actinides.	3
	(c)	Describe the separation of lanthanides by ion exchange method.	4
7.	(a)	Discuss the origin of spin magnetic moment.	3
	(b)	Explain why $[Mn(CN)_6]^4$ has a magnetic moment of 1.73 $_B$ whereas $[Mn(H_2O)_6]^2$ has a value of 5.9 $_B$.	3
	(c)	What is magnetic susceptibility? Draw plots of susceptibility versus temperature for paramagnetic and ferromagnetic substances and explain why they are different. 1+3=	=4
		OR	
8.	(a)	Write a short note on antiferromagnetism.	3
	(b)	Explain the magnetic behaviours of the following compounds : $1\frac{1}{2}+1\frac{1}{2}=$	=3
		(i) K ₃ [Co(CN) ₆] (ii) K ₃ [FeF ₆]	
	(c)	What is Curie law? Draw plots of inverse of molar susceptibility versus temperature for paramagnetic and antiferromagnetic substances and explain the differences. 1+3=	=4

7

CHEM/VI/CC/16**/641**

[Contd.

- **9.** (a) Explain in brief about Rayleigh and Raman scatterings using suitable energy diagrams.
 - (b) Give reasons why the NH_3 stretching frequencies of ammine complexes are lower than those of the free NH_3 molecule.
 - (c) Explain the differences of Fe-Cl symmetric stretching vibrational frequencies in the IR spectra of the following complex ions:

Complexes	(Fe Cl) (in cm	¹)
[FeCl ₄]	330	
[FeBr ₄]	200	
$[FeCl_4]^2$	266	
$[\text{FeBr}_4]^2$	162	
	OD	

OR

- **10.** (a) What are the factors on which the intensity of a Raman peak depends?
 - (b) Discuss different vibrational modes of a CO_2 molecule and explain how IR and Raman spectra are used for its structural elucidation.
 - (c) The IR spectra for *trans* and *cis*-isomers of $[Pd(NH_3)_2Cl_2]$ and $[Pt(NH_3)_2Cl_2]$, show the following M-X vibrational frequencies. Comment on the observed IR bands :

Complexes	(M-X) (in cm $^{-1}$)
$trans-[Pd(NH_3)_2Cl_2]$	333
cis -[Pd(NH $_3$) $_2$ Cl $_2$]	327, 306
$trans-[Pt(NH_3)_2Cl_2]$	365
cis-[Pt(NH ₃) ₂ Cl ₂]	330, 323

* * *

4

3

3

4