CHEM/V/CC/13

Student's Copy

2019

(CBCS)

(5th Semester)

CHEMISTRY

SEVENTH PAPER

(Physical Chemistry—II)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION—A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. The average translational kinetic energy of a gas depends upon

- (a) pressure ()
- *(b)* volume ()
- (c) temperature ()
- (d) number of molecules ()

/133

- **2.** For a non-linear polyatomic HCHO molecule, the number of vibrational degrees of freedom is given by
 - (a) 1 ()
 - *(b)* 4 *()*
 - *(c)* 5 ()
 - (d) 6 ()

3. The crystal plane for which the interplanar spacing d_{hkl} a / $\sqrt{12}$, is

- (a) 111 ()
- *(b)* 122 ()
- *(c)* 211 ()
- (d) 222 ()

4. For a cubic crystal, d_{100} / a is equal to

- (a) 1/1 ()
- *(b)* 1/2 ()
- (c) 1/4 ()
- (d) 1/8 ()

5. If activation energy (E_a) of a reaction is 0, then k is equal to

- (a) 0 ()
- *(b)* ()
- (c) A ()
- (d) A^{1} ()

CHEM/V/CC/13/133

- **6.** The reaction $A \ B \ C$ Products, obeys the rate law, $r \ d[A]/dt \ k[A]^2[B]^{3/2}[C]^{1/2}$, the overall order of reaction is
 - (a) 3 ()
 - *(b)* 1/2 ()
 - (c) 3/2 ()
 - (d) 5/2 ()

7. Relation between entropy and thermodynamic probability is given by

- $(a) \quad k \quad S \ln W \qquad ()$
- (b) $W \quad S \ln k$ ()
- $(c) W k \ln S \qquad ()$
- $(d) S k \ln W \qquad ()$
- **8.** As per the third law of thermodynamics, as T = 0
 - (a) G 0 ()
 - (b) S 0 ()
 - (c) U 0 ()
 - (d) H 0 ()

9. The unit of molar conductance is given by

(a) $S m^{-1} mol^{-1}$ () (b) $S m^{-2} mol^{-1}$ () (c) $S m^{-2} mol^{-1}$ () (d) $S m^{-2} mol^{-2}$ ()

CHEM/V/CC/13/133

10. Upon dilution, specific conductance of a solution

- (a) decreases ()
- (b) increases ()
- (c) remains unchanged ()
- (d) increases then decreases ()

SECTION-B

(Marks: 15)

Answer the following questions :

3×5=15

1. Calculate the average speed of H_2 gas molecules at 0 °C.

OR

- **2.** Calculate the kinetic energy of 1 mole of a $N_2(g)$ at 27 °C.
- **3.** What are elements of symmetry in a crystal? Give an example each of *(a)* elements of symmetry, *(b)* plane of symmetry and *(c)* centre of symmetry.

OR

- **4.** Differentiate between isotropy and anisotropy. Give two examples each for isotropy and anisotropy.
- 5. Derive the integrated form of Arrhenius equation.

OR

- **6.** Define (a) molecularity of a reaction, (b) threshold energy and (c) turnover number.
- **7.** Write the expression for the standard entropy of a gas above its boiling point.

OR

8. Write a note on the Nernst heat theorem.

CHEM/V/CC/13/133

9. Define transport number of an ion. Show that the sum of transport numbers of cation and anion is unity.

OR

10. Define (*a*) equivalent conductivity and (*b*) molar conductivity. What is the unit of equivalent conductivity?

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

The figures in the margin indicate full marks for the questions

1.	(a)	Derive Maxwell-Boltzmann distribution law of molecular velocities.	5½
	(b)	Give the expression for mean free path of a gaseous molecule.	1
	(c)	Calculate the root meat square velocity of $O_2(g)$ molecule having density 1.429 kg m 3 at STP.	3½
		OR	
2.	(a)	Derive root mean square from Maxwell's relation.	3½
	(b)	State and explain the law of equipartition of energy.	3½
	(c)	Calculate the various degrees of freedom in case of (i) CO_2 , (ii) H_2O and (iii) C_6H_6 gaseous molecules.	3
3.	(a)	Calculate the number of atoms present in-	
		(i) simple cubic unit cell;	
		(ii) face-centred cubic unit cell;	
		(iii) body-centred cubic unit cell.	3
	(b)	Define centre of symmetry. Find the total number of symmetry elements of various types in a cubic crystal. $1+2\frac{1}{2}=$	3½

CHEM/V/CC/13/133

	(c)	The parameters of an orthorhombic unit cell are a 50 pm, b 100 pm and c 150 pm. Determine the spacing between (123) planes. $3\frac{1}{2}$ OR
4.	(a)	Derive Bragg's equation. $3\frac{1}{2}$
	(b)	What are meant by crystal habit, interfacial angle and plane of symmetry? 3
	(c)	Calculate the longest wavelength of the X-ray that may be used to determine a lattice spacing of 1 Å by the Bragg reflection method. $3\frac{1}{2}$
5.	(a)	Discuss in detail the collision theory of bimolecular reactions. 5
	(b)	Write the reaction involved in the hydrolysis of ethyl acetate. What are the order and molecularity of this reaction? 2
	(c)	The rate constants of second-order reaction are 5.70×10^{-5} dm ³ mol ⁻¹ s ⁻¹ and 1.64×10^{-4} dm ³ mol ⁻¹ s ⁻¹ at 25 °C and
		40 °C respectively. Calculate the activation energy of the reaction. 3
		OR
6.	(a)	What are the types and characteristics of catalysis?3
	(b)	Write the reaction and type of catalyst involved in the inversion of cane sugar. 2
	(c)	Derive Michaelis-Menten equation in case of enzyme catalysis. 5
7.	(a)	Show that the entropy of any substance at very low temperatures (0 T 20K) is 1/3rd of the molar heat capacity. 3
	(b)	Derive Gibbs-Helmholtz equation. $3\frac{1}{2}$
	(c)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

CHEM/V/CC/13/133

OR

8.	(a)	Define chemical potential. 1
	(b)	Derive Gibbs-Duhem equation. $3\frac{1}{2}$
	(C)	How does chemical potential vary with pressure as well as
		temperature? 5 ¹ / ₂
9.	(a)	Derive Ostwald dilution law. $3\frac{1}{2}$
	(b)	Derive the expression for drift speed. 3
	(<i>c</i>)	A potential of 12 volt was applied across the two electrodes placed
	(C)	20 cm apart. A dilute solution of NaCl was placed between the
		electrodes when Na ion was found to move a distance of 1.60 cm in
		OR
10.	(a)	On the basis of asymmetry and electrophoretic effects, discuss in detail
		the Debye-Hückel-Onsager theory of strong electrolytes. $6\frac{1}{2}$
	(b)	For strong electrolytes NaOH, NaCl and BaCl ₂ , the molar ionic
		conductances at infinite dilution are $248 \cdot 1 \times 10^{-4} \text{ Sm}^2 \text{ mol}^{-1}$,
		126.5×10^{-4} Sm ² mol ⁻¹ and 280.0×10^{-4} Sm ² mol ⁻¹ respectively.
		1 5
		Calculate molar conductivity at infinite dilution for Ba (OH) ₂ . $3\frac{1}{2}$

* * *

7