2019

(CBCS)

(5th Semester)

CHEMISTRY

SIXTH PAPER

(Organic Chemistry—II)

Full Marks: 75

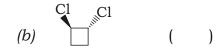
Time: 3 hours

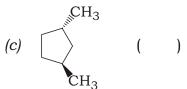
(PART : A—OBJECTIVE)

(*Marks*: 25)

The figures in the margin indicate full marks for the questions

SECTION—A


(*Marks*: 10)


Tick $(\mbox{\emset})$ the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. Which of the following compounds is chiral?

	H_3C_{\parallel}		
(a)	Cl	()
	СН ₃		

$$(d) \qquad \qquad (c) \qquad (c)$$

2. A reaction, in which two or more constitutional isomers could be obtained as a product but one of them predominates is called

- (a) chemoselective ()
- (b) regioselective ()
- (c) stereoselective ()
- (d) stereospecific ()

	(a) Antiperiplanar ()	(b) Anticlinical ()	
	(c) Synclinical ()	(d) Synperiplanar ()	
4.	The most stable conformation of 1-chloromation I and I are I and I and I and I are I and I and I are I are I and I are I and I are I and I are I and I are I are I and I are I and I are I and I are I are I and I are I are I are I and I are I are I are I and I ar	lorocyclohexane is Cl III IV (b) II () (d) IV ()	
5.	The order of aromaticity is (a) furan > pyrrole > thiophene ((b) pyrrole > furan > thiophene ((c) thiophene > furan > pyrrole ((d) thiophene > pyrrole > furan (<pre>() () () ()</pre>	
6.	6. What reagent should we use for the following transformation?		
	(a) Cl ₂ () (c) SOCl ₂ ()	(b) CuCl () (d) SO ₂ Cl ₂ ()	
7.	The reagent used in Clemmensen reduced (a) NH_2NH_2 () (c) $LiAlH_4$ ()	uction is $\it (b)$ Na/C $_2$ H $_5$ OH $\it ()$ $\it (d)$ Zn-Hg $\it ()$	
8.	Acetone reacts with another molecule of catalyst to give , -unsaturated carbony is known as (a) Mannich reaction () (b) benzoin condensation () (c) aldol condensation () (d) Claisen-Schmidt reaction (<u>=</u>	
CHE	M/V/CC/11 /132 2	[Contd.	

3. Which is the least stable conformation of butane?

9. In the following reaction, 2-dibromo-1-trifluoroethane is treated with alcoholic alkali to give an alkene as a final product :

$$\operatorname{Br_2C-CF_3} \xrightarrow{\bigodot} \operatorname{EtOH} \operatorname{Br_2C-CF_2} \longrightarrow \operatorname{Br_2C-CF_3} + \operatorname{F}$$

This type of reaction may be regarded as

- (a) substitution reaction
- (b) addition reaction
- (c) elimination reaction (
- (d) rearrangement)
- **10.** What will be the product for the following transformation?

What will be the product for the following transformation?

$$(a) \qquad \begin{array}{c} CH_3 \\ +H_3C \xrightarrow{CH_3} CH_2Cl \end{array} \xrightarrow{FeCl_3} \\ (a) \qquad (b) \qquad (c) \end{array}$$

$$(c) \qquad (d) \qquad (c) \qquad (d) \qquad (d)$$

SECTION—B

(*Marks* : 15)

Answer the following questions:

 $3 \times 5 = 15$

1. What are metamers? Give examples.

OR

- **2.** Write a short note on the stability of geometrical isomerism.
- 3. What do you mean by axial and equatorial bonds? Draw the most stable conformers of 1-methylcyclohexane.

OR

4. Differentiate between configuration and conformation.

5. Explain with mechanism why nitration of furan takes place at C-2 position.

OR

- **6.** Compare the basicity of pyrrole and pyridine.
- 7. What are active methylene compounds? Give examples.

OR

8. Complete the following reaction with mechanism:

$$\begin{array}{c|c} \text{COCH}_3 & \text{NH}_2\text{NH}_2, \text{KOH} \\ \hline & \text{Diethylene glycol, heat} \end{array} ?$$

9. Write a brief note on the formation of carbon-carbon double bond.

OR

10. Complete the following reaction with mechanism:

$$\begin{array}{c}
O \\
\hline
1) \text{ Ac}_2\text{O-H}_2\text{SO}_4 \\
\hline
2) \text{ H}_2\text{O}
\end{array}$$
?

(PART : B—DESCRIPTIVE)

(*Marks* : 50)

The figures in the margin indicate full marks for the questions

1. (a) Assign R- or S-configuration to the following isomers: $1 \times 3 = 3$

(i)
$$C_2H_5$$
 CH_3

(ii)
$$C_3H_7$$
 C_2H_5

$$\begin{array}{ccc} & & C_2H_5\\ \textit{(iii)} & H_2N & & H\\ & & C_3H_7 \end{array}$$

(b) What are meso-compounds? Explain with examples.

2+1=3

(c) Write short notes on the following:

 $2 \times 2 = 4$

- (i) Centre of symmetry
- (ii) Geometrical isomerism

OR

- **2.** (a) What do you mean by racemization? Explain how racemization can occur under $S_N 1$ reaction. 2+2=4
 - (b) What are diastereomers? Give examples. 1+1=2
 - (c) Assign E or Z notation to the following compounds: $1\times4=4$

(ii)
$$(H_3C)_3C$$
 NH_2 $(H_3C)_2HC$ $C(CH_3)_3$

(iii)
$$H_3C$$
 CHO CH_2CI

(iv)
$$C_6H_5$$
 OH C_3H_5

- **3.** (a) Draw and explain all the possible conformations of butane. Also draw its energy diagram showing energy differences between various conformations of butane. 2+2+1=5
 - (b) Draw the most stable conformation of *t*-butylcyclohexane showing all the axial and equatorial hydrogens.
 - (c) Draw all the possible conformations of ethane using Sawhorse and Newman projection.

OR

4. (a) Explain why axial-1-chlorocyclohexane is more stable than equatorial-1-chlorocyclohexane.

5

(b) Write a short note on the conformation of propane. Draw all the possible conformations of propane using Sawhorse and Newman projection. 2+2=4

- Draw the chair and boat conformations of 1-methylcyclohexane showing all the axial and equatorial hydrogens. 3
- **5.** (a) Complete the following reactions (without mechanism): $1 \times 3 = 3$

(i)
$$NH_3 + 2 \parallel \xrightarrow{CH} \xrightarrow{heat} ?$$

(ii)
$$V$$
 + SO₃ V pyridine V ?

(iii)
$$\sqrt[]{S}$$
 + HCl + CH₂O \longrightarrow ?

- (b) Explain giving example why nitration of pyridine takes place at C-3. 2+1=3
- How will you synthesize quinoline using Skraup synthetic method? 1+3=4Write down the reaction with suitable mechanism.

- **6.** (a) Complete the following reaction with mechanism:
 - + CH₂O + HCl $\xrightarrow{2)$ KCN 3) LiAlH₄/Et₂O \xrightarrow{HN} $\xrightarrow{COCH_2}$ $\xrightarrow{1)$ 200 °C/P₂O₅ $\xrightarrow{2)}$?
 - (b) Write a brief note on the molecular orbital picture of pyridine. 2
 - Complete the following reactions with mechanism: $2 \times 2 = 4$

(i)
$$\mathbb{Q}_{S}$$
 + HNO₃ + CH₃COOCOCH₃ \longrightarrow ?

(ii)
$$(ii)$$
 + CHCl₃ + aq. KOH \longrightarrow ?

7. (a) Explain keto-enol tautomerism giving suitable examples.

2

- (b) Complete the following reactions giving suitable mechanism and name the reaction (any two): $4\times2=8$
 - (i) 2 HCHO $\xrightarrow{50\% \text{ NaOH}}$?
 - (ii) $\stackrel{\text{CHO}}{\longrightarrow}$?
 - (iii) $\stackrel{\circ}{\downarrow}$ $\stackrel{\text{NH}_2\text{NH}_2/\overset{\circ}{\text{OH}}}{\longrightarrow}$?

OR

- **8.** (a) Differentiate between tautomerism and resonance.
 - (b) Write the product of the following reactions giving suitable mechanism (any two): $3\frac{1}{2}\times2=7$
 - (i) $(CH_3CO)_2O \rightarrow ? \xrightarrow{H_2O} ?$
 - (ii) $\stackrel{O}{\downarrow}$ $\stackrel{\text{dil. NaOH}}{\longrightarrow}$? $\stackrel{\text{heat}}{\longrightarrow}$?
 - (iii) $CHO \xrightarrow{\text{CHO}} \text{Zn-Hg} ?$
- **9.** (a) Complete the following reactions with mechanism (any three): 3×3=9
 - $(i) \longrightarrow \overline{}$
 - (ii) $\stackrel{\text{Ph}}{\underset{\text{OH}}{\longrightarrow}}$ $\stackrel{\text{Ph}}{\underset{\text{OH}}{\longrightarrow}}$
 - (iii) $Me O NH_2 + Br_2 \xrightarrow{NaOH} ?$
 - (iv) $\stackrel{\text{iv}}{=}$ + $\stackrel{\text{H}}{\stackrel{\text{N}}{=}}$ $\stackrel{\text{1) HCHO}}{\text{2) HCl, MeOH, Reflux}}$?

(b) What are carbocations?

OR

10. (a) What is Fries rearrangement? What will be the products for the following reaction? 1+2=3

$$\stackrel{\text{O}}{\longrightarrow} \stackrel{\text{AlCl}_3}{\longrightarrow} ?$$

(b) Complete the following reactions with mechanism (any two): 3×2=6

(i)
$$Cl \xrightarrow{PPh_3}$$
?

(ii)
$$H + BrCH_2COOEt \xrightarrow{Zn}$$
 ?

(c) What are acetals?

1

1

* * *