CHEM/V/CC/11

Student's Copy

2018

(CBCS)

(5th Semester)

CHEMISTRY

SIXTH PAPER

(Organic Chemistry—II)

Full Marks : 75 *Time* : 3 hours

(PART : A—OBJECTIVE)

(*Marks* : 25)

The figures in the margin indicate full marks for the questions

SECTION—A (Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

1. The number of stereoisomers possible in 3-bromo-2-iodobutane is

- 2. The net optical rotation of racemic mixture is
 - (a) zero
 (b) $+90^{\circ}$ (c) -90° (c) $(d) 120^{\circ}$ (c) $(d) 120^{\circ}$

/129

3. The two isomers given below

are

- (a) enantiomers ()
- (b) mesomers ()
- (c) position isomers ()
- (d) diastereomers ()

4. Cis-1,3-dimethyl cyclohexane is

- (a) optically active ()
- (b) optically inactive ()
- (c) racemic mixture ()
- (d) enantiomer ()
- 5. The conversion of

aniline pr

propane-1,2,3-triol nitro

nitrobenzene

- is known as
- (a) Fischer indole synthesis ()
- (b) Skraup synthesis ()
- (c) Bischler-Napieralski synthesis ()
- (d) Friedel-Crafts reaction ()

CHEM/V/CC/11/129

- **6.** For furan, electrophilic substitution occurs preferentially at the 2-position because
 - (a) 2-position is easier to reach ()
 - (b) 4-position is difficult to reach ()
 - (c) 2-position is more stabilized than 3-position ()
 - (d) 2-position is more stabilized than 5-position ()
- **7.** The reduction of carbonyl groups of aldehydes and ketones to methylene groups with amalgamated zinc and concentrated hydrochloric acid is known as
 - (a) Cannizzaro's reduction ()
 - (b) Mannich reduction ()
 - (c) Wolff-Kishner reduction ()
 - (d) Clemmensen reduction ()
- 8. In ethyl acetoacetate, keto-enol tautomerism exists in the ratio of
 - (a) 90%: 10%()(b) 80%: 20%()(c) 60%: 40%()(d) 20%: 80%()
- **9.** The reaction of -haloesters with carbonyl compounds in presence of zinc to produce -hydroxy-esters is known as
 - (a) Claisen reaction ()
 - (b) Mannich reaction ()
 - (c) Reformatsky reaction ()
 - (d) Friedel-Crafts alkylation ()
- **10.** When aromatic aldehydes or ketones react with aliphatic aldehydes or ketones or esters having -hydrogens with weak base (i.e., 10% NaOH) and low temperature, a crossed aldol condensation with subsequent dehydration occurs predominantly with the formation of , -unsaturated aldehydes, ketones or esters. This reaction is known as
 - (a) Knoevenagel reaction ()
 - (b) Michael reaction ()
 - (c) aldol condensation reaction ()
 - (d) Claisen-Schmidt reaction ()

SECTION-B

(Marks: 15)

Answer the following questions :

1. What is the essential condition for a compound to be chiral? Justify your answer with an example.

OR

Define stereogenic centre. Draw all the possible stereoisomers of tartaric acid.

2. Differentiate between conformation and configuration.

OR

Draw all the conformational isomers of ethane. Indicate the most stable and the least stable conformer.

3. Compare between the basicity of pyrrole and pyridine.

OR

Predict the product and write the mechanism for the following :

$$\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} SO_3, Pyridine ?$$

4. Differentiate between tautomerism and resonance.

OR

Explain the acidity of -hydrogen in carbonyl compound.

5. How does base catalyzed hydrolysis of ester take place by $B_{AC}2$ mechanism?

OR

Complete the following reaction :

$$\begin{array}{c|c} H_{3}C & OH & OH \\ H_{3}C & C & C \\ H_{3}C & C & CH_{3} \end{array} \xrightarrow{H_{2}SO_{4}} ?$$

CHEM/V/CC/11/129

[Contd.

3×5=15

(PART : B-DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

- **1.** (a) Explain axis of symmetry with a suitable example. 2
 - (b) Assign E- and Z-configuration to the following molecules :

	(c)	Write the difference between <i>meso</i> -compound and racemic mixture with	-
		suitable example. 2	+2
	(d)	Show inversion of configuration with appropriate example.	2
		OR	
2.	(a)	Assign R- and S-configuration to the following :	2
		соон соон	
		H_2N H CH_3 and CH_3	
	(b)	Write all the possible stereoisomers of 2,3-dichlorobutane. Identify the <i>meso</i> -isomer and support your answer with explanation.	3
	(c)	The observed rotation of 10 ml of a solution containing 2.0 gm of a compound when placed in 25 cm long polarimeter tube is +134°. What is the specific rotation of the compound?	3
	(d)	Explain any <i>one</i> of the following with suitable example :(i) Diastereomers(ii) Optical activity	2

CHEM/V/CC/11/129

[Contd.

2

		methyl group is in the axial position? Illustrate and explain.	3
	(b)	Draw the Newman projection formula for boat and chair conformation of cyclohexane indicating all the hydrogens. Indicate the most stable conformation and justify.	3
	(c)	By drawing Newman projection formula, show how the potential energy changes occur in <i>n</i> -butane when the molecule is rotated around its C_2 — C_3 bond axis through a complete cycle.	4
		OR	
4.	(a)	Write all the important conformations of 1,2-dimethylcyclohexane. Which is the most stable conformer and why?	3
	(b)	What are meant by angle strain, rotational strain and steric strain in a molecule?	3
	(C)	Draw Newman and Sawhorse formula for the different conformational isomers of ethane. Explain their stability.	3
	(d)	Draw the chair conformation of <i>trans</i> -1,3-dimethylcyclohexane.	1

3. (a) What is the interaction encountered in methyl cyclohexane when

- 5. (a) How will you synthesize pyrrole by Paal-Knorr synthesis method? Show the reaction pathway and the mechanism involved in it.
 - (b) Predict the reagent and write the reaction mechanism for the following : 5

6

CHEM/V/CC/11/129

OR

- **6.** (a) Compare the basicity of pyridine and piperidine.
 - (b) Write the reaction mechanism for the following reaction :

2,5-dimethylfuran-3,4dicarboxylic acid

- (c) Why is pyrrole a weak base?
- 7. (a) Write the mechanism for the following transformation :

O NH_2 H₃C Ηŋ Ĥ

(b) What are the five reactions supporting the existence of keto-form of ethyl acetoacetate?

OR

- 8. (a) What are the reactions supporting the existence of enol-form of ethyl acetoacetate?
 - (b) What are the properties of the two tautomeric forms of ethyl acetoacetate? How will you separate the keto- and enol-form of ethyl acetoacetate?

7

2

5

3

5

5

5

- **9.** (a) Discuss Friedel-Crafts acylation reaction with suitable example and reaction mechanism.
 - (b) Complete the following reactions and verify your answer with reaction mechanism : 3×2=6

- **10.** (a) Write the Mannich reaction mechanism with suitable example. 3
 - (b) Complete any two of the following reactions with mechanism : $2\frac{1}{2} \times 2=5$

(c) What are acetals and ketals?

* * *

CHEM/V/CC/11/129

G9—410

2