CHEM/V/CC/09

Student's Copy

2018

(CBCS)

(5th Semester)

CHEMISTRY

FIFTH PAPER

(Inorganic Chemistry—II)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(*Marks* : 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. Which of the following has the metal in the lowest oxidation state?

(a) $[Fe(CN)_6]^3$ () (b) $[Fe(CO)_5]$ () (c) $[Fe(H_2O)_6]^3$ () (d) Fe_2O_3 ()

/128

1

[Contd.

 $1 \times 10 = 10$

2. Which of the following alkali metal hydrides is thermally most stable?

- (a) LiH () (b) NaH ()
- (c) KH () (d) RbH ()

3. Caro's acid is

- (a) H_2SO_5 () (b) H_2SO_8 ()
- (c) H_2SO_4 () (d) H_2SO_7 ()

4. A centre of symmetry is present in

- (a) cis-1,2-dichloroethylene ()
- (b) trans-1,2-dichloroethylene ()
- (c) HCl ()
- (d) HCN ()

5. Square planar complexes are usually

- (a) low-spin complex ()
- (b) high-spin complex ()
- (c) Both (a) and (b) ()
- (d) None of the above ()

CHEM/V/CC/09/128

[Contd.

- **6.** The ratio between the number of close-packed atoms and the number of tetrahedral holes in cubic close-packing is
 - (a) 1:1 () (b) 1:2 ()
 - (c) 1:3 () (d) 1:4 ()
- **7.** In corundum, oxide ions are arranged in hexagonal close-packing and Al³ ions occupy two-third of the octahedral voids. Then the formula of corundum is
 - (a) Al_2O_3 () (b) Al_2O ()
 - (c) AlO () (d) AlO_3 ()
- **8.** The number of antibonding electron pairs in O_2^2 ion on the basis of MO theory is

9. _{oct} is

- (a) greater than tet
 (b) lesser than tet
 (c) equal to tet
 (c
- 10. Dipole-dipole interactions are also called as
 - (a) London forces ()
 - (b) Debye forces ()
 - (c) Keesom forces ()
 - (d) ion-dipole interactions ()

CHEM/V/CC/09/128

[Contd.

SECTION—B

(Marks: 15)

Answer the following questions :

1. Give a brief account of hexagonal close-packed (hcp) structure of crystals.

OR

Explain non-stoichiometric defects in crystals and its consequence.

2. Using molecular orbital energy level diagram, explain the paramagnetism of O_2 molecule.

OR

Explain instantaneous dipole-induced dipole interactions (London forces).

3. HNO_3 only can act as an oxidizing agent but HNO_2 can act both as an oxidizing agent and a reducing agent. Explain.

OR

How do calcium carbide (CaC $_2$), magnesium carbide (Mg $_2$ C $_3$) and silicon carbide (SiC) react with water?

4. What are the necessary conditions for a set to form a group?

OR

Compare the self-ionization of water and liq. NH₃.

5. Compare valence bond theory (VBT) and crystal field theory (CFT).

OR

What are the factors on which the magnitude of crystal field stabilization energy (CFSE) depend?

CHEM/V/CC/09/128

[Contd.

 $3 \times 5 = 15$

(PART : B-DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

1.	(a)	Define the term 'lattice energy' of an ionic solid. How is lattice energy of sodium chloride calculated with the help of Born-Haber cycle? Describe. 1+4=	•5		
	(b)	Calculate the limiting radius ratio (r / r) for the tetrahedral coordination of a cation in an ionic lattice.	3		
	(c)	Explain giving reason why LiI is soluble in $\mathrm{H_2O}$ while LiF is not.	2		
	OR				
2.	(a)	What are n -type and p -type semiconductors? Discuss giving examples.	4		
	(b)	Explain 'Li ion is most extensively hydrated among the alkali metal cations'.	2		
	(c)	What are the three types of cubic crystals? Calculate the number of atoms per unit cell in each case. 1+3=	⊧4		
3.	(a)	What are sigma- and pi-molecular orbitals? Give their characteristics. $1+2=$	=3		
	(b)	How can you deduce bond order from molecular orbital theory?	2		
	(c)	Why is hydrogen diatomic but helium monoatomic?	2		
	(d)	Arrange O_2 , O_2 and O_2 in increasing order of their stability and bond length.	3		
OR					
4.	(a)	Write a note on 'bonding and antibonding molecular orbitals'.	2		

5

[Contd.

CHEM/V/CC/09/128

- (b) Draw molecular orbital energy level diagram of NO. Find its bond order and magnetic properties. 3+2=5
- (c) How does MOT explain the difference in the reactivity of N_2 , O_2 and F_2 ? 3
- 5. (a) Ge(II) is strong reducing agent and Ge(IV) is not, Pb(IV) is an oxidizing agent and Pb(II) is not. Explain.2
 - (b) Discuss the structure and geometry of XeF_4 and XeF_6 . $1\frac{1}{2}+1\frac{1}{2}=3$
 - (c) What is catenation? Discuss with reference to nitrogen group elements. 2
 - (d) Discuss the structure and bonding in diborane (B_2H_6) molecule. 3

OR

6.	(a)	What are carbides? How are they classified? Specify the placement of the different elements from the different groups of the periodic table in different classes of the carbides. 1+1-	c table in 1+1+2=4		
	(b)				
	(c)	What are pseudohalogens? Give three examples of it. $1\frac{1}{2}+1$	1/2=3		
7.	(a)	Discuss solvent system of acids and bases with suitable examples.	3		
	(b)	What are conjugate acids and bases? Discuss with examples.	2		
	(C)	Discuss the following reactions in liquid ammonia : (<i>i</i>) Precipitation reactions (<i>ii</i>) Redox reactions	4		
	(d)	Define symmetry point group.	1		
OR					
8.	(a)	Find out all the symmetry elements present in H_2O and NH_3 and then specify their point groups.	1 3		
	(b)	Discuss the action of liq. ammonia on alkali metals.	3		

CHEM/V/CC/09/128

6

[Contd.

- (c) Compare Lewis concept and Brönsted-Lowry concept of acids and bases.
- (d) Define the following :
 - (i) A subgroup
 - *(ii)* Order of a group
- **9.** (a) Discuss the splitting of *d*-orbitals in weak and strong field with reference to octahedral complexes.
 - (b) Discuss the properties of 3d series elements with respect to—
 - (i) oxidation states;
 - (ii) electronic configurations.
 - (c) Third and second rows of transition series elements resemble each other much more than they resemble first row transition elements. Explain.
 - (d) Discuss ' $[Fe(CN)_6]^4$ is diamagnetic but $[Fe(CN)_6]^3$ is paramagnetic'. 2

OR

- 10. (a) How can the magnetic properties of transition metal complexes be explained on the basis of CFT? Discuss with at least two examples. 3
 - (b) Sc^3 is colourless but Ti^3 is coloured. Explain.
 - (c) Define 'crystal field stabilization energy'. For $[Cr (H_2O)_6]^3$ ion the mean pairing energy *P* is found to be 23500 cm⁻¹. The magnitude of $_0$ is 13900 cm⁻¹. Calculate the CFSE for this complex ion corresponding to high-spin and low-spin states. 1+4=5

7

CHEM/V/CC/09/128

G9-210

2

2

3

3

2