CHEM/V/07

Student's Copy

2018

(Pre-CBCS)

(5th Semester)

CHEMISTRY

SEVENTH PAPER (CHEM-353)

(Physical Chemistry—II)

Full Marks: 55

Time : $2\frac{1}{2}$ hours

(PART : A—OBJECTIVE)

(Marks: 20)

The figures in the margin indicate full marks for the questions

SECTION-A

(*Marks* : 5)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 5=5$

- **1.** The third law of thermodynamics states that in the limit T = 0
 - (a) G 0 (
 - (b) H 0 ()
 - (c) U 0 ()
 - (d) S 0 ()

2. On dilution, equivalent conductance of a solution

- (a) remains unchanged (
- (b) decreases ()
- (c) increases and decreases ()

)

(d) increases ()

)

[Contd.

3. Nernst heat theorem is applicable to

(a) pure solids only ()
(b) pure gases only ()
(c) solids and liquids ()
(d) pure liquids only ()

4. The transport number of cation and anion of an electrolyte is

- 5. A tetragonal crystal possesses which of the following axes of symmetry?
 - (a) Two-fold ()
 - (b) Three-fold ()
 - (c) Four-fold ()
 - (d) Six-fold ()

SECTION-B

(Marks: 15)

Answer the following questions :

- **1.** Describe briefly the effect of temperature on Maxwell's distribution of molecular velocities.
- **2.** Derive a relationship between molar conductance and specific conductance, and hence the unit of molar conductance.
- **3.** Describe the Lindemann theory of unimolecular reactions.
- 4. Write a note on interfacial angle.
- **5.** Explain with example the enzyme catalysis.

CHEM/V/07/313

[Contd.

 $3 \times 5 = 15$

(PART : B-DESCRIPTIVE)

(*Marks* : 35)

The figures in the margin indicate full marks for the questions

1.	(a)	Define the following :	2		
		(i) Most probable velocity			
		(ii) Mean-free-path			
	(b)	Give an account of Maxwell distribution of molecular velocities.	3		
	(c)	Calculate the root-mean-square velocity of nitrogen at 27 °C and 70 cm pressure. Density of Hg = 13.6 g cm $^{-1}$.	2		
OR					
2.	(a)	State and explain the law of equipartition of energy.	3		
	(b)	What is meant by degree of freedom of a molecule?	2		
	(C)	Explain the term 'collision diameter'.	2		
3.	(a)	Describe Nernst heat theorem.	3		
	(b)	What is residual entropy?	1		
	(D)		1		
	(C)	Derive Gibbs-Heimholtz equation.	3		
OR					
4.	(a)	State the third law of thermodynamics.	1		
	(b)	Derive an expression for the variation of chemical potential with temperature.	3		
	(c)	Derive Gibbs-Duhem equation and give its significance.	3		
5.	(a)	What is viscometer? Describe Ostwald's viscometer method for the determination of viscosity of liquid. 1+2*	=3		
	(b)	Define parachor.	1		
	(c)	Molecular parachor of decane ($C_{10}H_{22}$) is 424.2 and CH_2 group is 39.			
		Calculate the atomic parachor of carbon and hydrogen.	3		

[Contd.

CHEM/V/07/313

OR

6.	(a)	What is enzyme catalysis? Describe some characteristics of enzyme	
		catalysis. 1+2	2=3
	(b)	What are liquid crystals?	1
	(C)	Derive the Michaelis-Menten equation for enzyme-catalyzed reaction.	3
7.	(a)	What are meant by space lattice and unit cell?1+1	1=2
	(b)	Derive Bragg's equation.	3
	(c)	Calculate the Miller indices of a crystal plane which cut through the crystal axis at $(2a, 3b, c)$ and $(6a, 3b, 3c)$.	2
		OR	
8.	(a)	Define the following : 1×3	3=3
		(i) Centre of symmetry	
		(ii) Plane of symmetry	
		(iii) Axis of symmetry	
	(b)	Define Miller indices and law of rational indices.	2
	(c)	What are the different kinds of Bravais lattices in a cubic unit cell?	2
9.	(a)	Define the terms 'specific conductivity' and 'equivalent conductivity' of a	
		solution.	2
	(b)	What is Ostwald dilution law?	2
	(C)	The molar conductivities at infinite dilution of NaCl, HCl and CH_3COONa are 126.4 ohm $^1 \text{ cm}^2 \text{ mol} ^1$, 426.1 ohm $^1 \text{ cm}^2 \text{ mol} ^1$ and	
		$97.0 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ respectively at 25 °C. Calculate the molar	
		conductivity at infinite dilution for CH ₃ COOH.	3
		OR	
10.	(a)	State and explain Kohlrausch law.	2
	(b)	Describe moving boundary method for the determination of transport number.	3
	(c)	Molar ionic conductance at infinite dilution of Na and Cl ions are 50.11×10^{-4} Sm ² mol ⁻¹ and 76.34×10^{-4} Sm ² mol ⁻¹ respectively.	
		Calculate the transport number of Na and Cl ions.	2
		* * *	

CHEM/V/07/313

G9—80