2018

(Pre-CBCS)

(5th Semester)

CHEMISTRY

FIFTH PAPER (CHEM-351)

(Organic Chemistry—II)

Full Marks: 55

Time: 2½ hours

(PART : A—OBJECTIVE)

(*Marks*: 20)

The figures in the margin indicate full marks for the questions

SECTION—A

(*Marks*: 5)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 5 = 5$

- 1. The increasing order of acidity of the following compound is
 - (a) m-nitrophenol < p-nitrophenol < 2,4-dinitrophenol ()
 - (b) 2,4-dinitrophenol < p-nitrophenol < m-nitrophenol ()
 - (c) p-nitrophenol < 2,4-dinitrophenol < m-nitrophenol ()
 - (d) m-nitrophenol < 2,4-dinitrophenol < p-nitrophenol ()

2.		reaction between aldehyde and HCN to form cyanohydrin is an mple of	
	(a)	nucleophilic substitution ()	
	(b)	nucleophilic addition ()	
	(c)	addition-elimination ()	
	(d)	elimination ()	
3.	Primary amine when treated with aldehyde gives		
	(a)	alcohols ()	
	(b)	Schiff's base ()	
	(c)	2°-amine ()	
	(d)	carbylamine ()	
4.	Ace	tal is formed by the reaction between	
	(a)	aldehyde and carboxylic acid ()	
	(b)	aldehyde and alcohol ()	
	(c)	ketone and alcohol ()	
	(d)	ketone and carboxylic acid ()	
5.	The	order of aromaticity of five-membered heterocycle is	
	(a)	pyrrole < thiophene < furan ()	
	(b)	furan < pyrrole < thiophene ()	
	(c)	pyrrole < furan < thiophene ()	
	(d)	furan < thiophene < pyrrole ()	

SECTION—B

(*Marks* : 15)

Answer the following questions:

 $3 \times 5 = 15$

- 1. Draw the molecular orbital picture of benzene with proper labelling.
- 2. Complete the following reaction with suitable mechanism:

2HCHO 50% NaOH ?

- 3. Describe nitrous acid test to distinguish between 1°, 2° and 3° amines.
- 4. Explain Mannich reaction taking suitable example.
- **5.** Electrophilic substitution of pyridine takes place primarily at C-3 than C-2 and C-4. Explain.

(PART : B—DESCRIPTIVE)

(Marks: 35)

The figures in the margin indicate full marks for the questions

1. (a) State Hückel's rule of aromaticity. Indicate whether the following compounds are aromatic or not: 1+4=5

$$\triangle$$
 , \bigcirc , \bigcirc , \bigcirc

(b) "Phenols are more acidic than alcohols." Explain.

2

OR

2. (a) Complete the following reactions (mechanisms not required): $1 \times 2 = 2$

(i)
$$\sim$$
 Cl + NaOH \sim ?

(ii)
$$O_2N$$
—C1 $\xrightarrow{NH_3}$? NO_2

(b) Complete the reactions with suitable mechanisms (any two): $2\frac{1}{2} \times 2=5$

(i)
$$Cl + NaNH_2 \xrightarrow{liq. NH_3}$$
?

(ii)
$$\langle - \rangle$$
 OH + CHCl₃ \longrightarrow ?

(iii)
$$\sim$$
 OH + NaOH \longrightarrow ? \sim ?

3. (a) Complete the following reactions with suitable mechanisms (any *two*):

$$2\frac{1}{2} \times 2 = 5$$

(i)
$$CH_3COCH_3 + NH_2OH \xrightarrow{H^+}$$
 ?

(ii) Ph—CHO + KCN
$$\xrightarrow{\text{EtOH}}$$
 ?

(iii)
$$CH_3COOH + C_2H_5OH \xrightarrow{H^+}$$
 ?

(b) "Aldehydes are more reactive than ketones towards nucleophile." Explain.

OR

4. (a) Arrange the following in their increasing order of acidity and explain : 2 HCOOH, CH $_3$ COOH, ClCH $_2$ COOH

2

- (b) Complete the following reactions (mechanisms not required): $1 \times 5=5$
 - (i) $CH_3COCH_3 \xrightarrow{Conc. HCl}$?

(ii) C + CH₃MgBr
$$\longrightarrow$$
 ? $\xrightarrow{\text{H}_2\text{O}/\text{H}^+}$?

(iii)
$$\stackrel{O}{\parallel}$$
 $\stackrel{KMnO_4/H^+}{\longrightarrow}$? $\stackrel{SOCl_2}{\longrightarrow}$?

(iv) $CH_3COCH_3 + NH_2CONHNH_2 \longrightarrow ?$

(v)
$$H + \text{LiAlH}_4 \xrightarrow{H_2O/H^+}$$
?

- **5.** (a) Arrange the following in their increasing order of basicity and explain : $3 \text{ CH}_3\text{NH}_2$, $(\text{CH}_3)_2\text{NH}$, $(\text{CH}_3)_3\text{N}$
 - (b) Differentiate between tautomerism and resonance. 2
 - (c) Complete the following reactions: 1×2=2
 - (i) CH_3 — $NH_2 + CH_3COC1$ \longrightarrow ?
 - (ii) $R-NH_2 + CHCl_3 \xrightarrow{KOH} ?$

- **6.** (a) How will you synthesize the following compounds from ethylacetoacetate? 2×2=4
 - (i) Butanoic acid
 - (ii) 2-Pentanone
 - (b) What are active methylene compounds? Give examples.
 - (c) Complete the following reactions: 1×2=2

(i)
$$CH_3$$
— $NH_2 + CS_2 \rightarrow ? \xrightarrow{HgCl_2} ?$

(ii)
$$\sim$$
 NH₂ + aq. Br₂ \longrightarrow ?

7. (a) Complete the following reactions with suitable mechanisms (any two):

$$2\frac{1}{2} \times 2 = 5$$

1

(i)
$$CH_3$$
 + CH_3COC1 $AlCl_3$?

(ii)
$$OEt$$
 NaOEt $EtOH$?

(iii)
$$\stackrel{\text{O}}{\longleftarrow}$$
 + CH₃Br + PPh₃ $\stackrel{\text{BuLi}}{\longrightarrow}$?

(b) Explain the $A_{AC}2$ mechanism for the hydrolysis of ester.

8. (a) Complete the following reactions with suitable mechanisms (any *two*):

 $2\frac{1}{2} \times 2 = 5$

(i)
$$\stackrel{O}{\longrightarrow}$$
 + $\stackrel{H}{\longrightarrow}$?

$$\begin{array}{ccc}
& & \text{Ph} & \text{Me} \\
(ii) & \text{Ph} & & & \text{Me} & & & \\
& & & & & \text{HO} & \text{OH} & & \\
\end{array}$$
?

(iii)
$$H_2O \rightarrow ?$$

- (b) How will you obtain benzilic acid from benzil? Give proper mechanism for the reaction.
- **9.** (a) How will you synthesize indole from Fischer indole method? Give chemical equations.
 - (b) Complete the following reactions (any three, mechanisms not required):

 $1 \times 3 = 3$

2

(i)
$$O = \bigvee_{H \in H} O \xrightarrow{NH_3} ?$$

(ii)
$$N + SO_3 \xrightarrow{\text{pyridine}} ?$$

(iii)
$$\stackrel{\text{(iii)}}{\sim} + \operatorname{Br}_2 \xrightarrow{\operatorname{dioxan}} ?$$

(iv)
$$+ \text{HNO}_3 \xrightarrow{\text{H}_2\text{SO}_4}$$
?

10. (a) Compare the basicity of the following:

 $2 \times 2 = 4$

- (i) Pyrrole vs. pyridine
- (ii) Pyridine vs. piperidine
- (b) Give the mechanism of the following transformation:

3

$$\begin{array}{c} \text{CH}_2\text{OH} \\ \text{CHOH} \\ \text{CH}_2\text{OH} \\ \end{array} \xrightarrow{\text{Conc. H}_2\text{SO}_4} \begin{array}{c} \text{CH}_2 \\ \text{CH} \\ \text{CH}_2 \\ \end{array} \xrightarrow{\text{CH}_2} \begin{array}{c} \text{NH}_2 \\ \text{H}^+, \end{array}$$

* * *