BOT/V/CC/13

2019

(CBCS)

(5th Semester)

BOTANY

SEVENTH PAPER

(Cytogenetics, Plant Breeding and Bioinformatics)

Full Marks: 75

Time : 3 hours

(PART : A—OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

SECTION-A

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

1. The adjacent nucleosomes are connected by a

()

- (a) histone ()
- (b) chromatin ()
- (c) linker DNA
- (d) phosphate linkage ()

2. When a reunion restores the original sequence of genes in a chromosome, it is called

- (a) translocation ()
- (b) restituted breaks ()
- (c) non-restituted breaks ()
- (d) Okazaki fragments ()

[Contd.

	An individual lacking one chromosome from a diploid set $(2n 1)$ is called						
	(a) monosomic	()	<i>(b)</i>	nullisomic ()		
	(c) haploid	()	(d)	trisomic ()		
4.	• A polyploid organism which originates by combining complete chromosome sets from two or more species is known as						
	(a) autopolyplo	id	()	(b)	autoallopolyploid ()		
	(c) allopolyploid	1	()	(d)	multiple polyploid ()		
5.	The visual chara species is	acteristic	that i	dentifies a	particular chromosome set of a		
	(a) genetic map)	()	(b)	genotype ()		
	(c) phenotype	()	(d)	karyotype ()		
6.	Alleles are						
	(a) alternative	forms of	the sa	ame gene	()		
	(b) alternative forms of different genes ()						
	(c) two different genes ()						
	(d) polymers of	DNA	()			
7.	The marked vigour or capacity for growth often exhibited by crossbred animals or plants is called						
	(a) totipotency	()	(b)	heterosis ()		
	(c) polyploidy	()	(d)	pure line selection ()		
			The substitution of a purine with a pyrimidine and vice versa is a				
8.	The substitution	ı of a pı	ırine v	vith a pyri	midine and vice versa is a		
8.	The substitution (a) transition n	ו of a pu nutation	ırine v	vith a pyriı ()	midine and vice versa is a		
8.	The substitution (a) transition m (b) transversion	n of a punutation nutation n mutatio	urine v on	vith a pyrin () ()	midine and vice versa is a		
8.	The substitution (a) transition m (b) transversion (c) frameshift m	n of a pundation n mutation n mutation	arine v on	vith a pyrin () () ()	midine and vice versa is a		
8.	The substitution (a) transition m (b) transversion (c) frameshift m (d) None of the	n of a pundation n mutation n mutation above	urine v on	vith a pyrin () () () ()	midine and vice versa is a		
8. 9.	The substitution (a) transition m (b) transversion (c) frameshift m (d) None of the The search tool	n of a punutation n mutation nutation above that cor	arine v on mpares	vith a pyrin () () () s a DNA qu	midine and vice versa is a nery against a DNA database is		
8. 9.	The substitution (a) transition m (b) transversion (c) frameshift m (d) None of the The search tool (a) BLASTN	n of a punutation n mutation nutation above that cor	arine v on npares)	vith a pyrin () () () s a DNA qu <i>(b)</i>	midine and vice versa is a nery against a DNA database is TBLASTN ()		
8. 9.	The substitution (a) transition m (b) transversion (c) frameshift m (d) None of the The search tool (a) BLASTN (c) BLASTX	n of a punutation n mutation a mutation above that cor (arine v on npares))	vith a pyrin () () () s a DNA qu <i>(b)</i> <i>(d)</i>	midine and vice versa is a aery against a DNA database is TBLASTN () BLASTP ()		
8. 9. 10.	The substitution (a) transition m (b) transversion (c) frameshift m (d) None of the The search tool (a) BLASTN (c) BLASTX A bit has binary	n of a punutation n mutation above that cor ((y value o	npares)))	vith a pyrin () () () s a DNA qu <i>(b)</i> <i>(d)</i>	midine and vice versa is a aery against a DNA database is TBLASTN () BLASTP ()		
8. 9. 10.	The substitution (a) transition m (b) transversion (c) frameshift m (d) None of the The search tool (a) BLASTN (c) BLASTX A bit has binary (a) 0 or 1	n of a punutation n mutation above that cor (y value o ()	npares)))	vith a pyrin () () () s a DNA qu (b) (d)	midine and vice versa is a nery against a DNA database is TBLASTN () BLASTP () 1 or 2 ()		

BOT/V/CC/13/147

[Contd.

SECTION-B

(Marks: 15)

Write short notes on the following :

1. Microtubules

OR

Deletion

2. Trisomy

OR

Polyploidy

3. Multiple allelism

OR

Cytoplasmic male sterility

4. Chemical mutagens

OR

Pure line selection

5. DNA data

OR

BLAST

(PART : B—DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

 What are chromosomes? Elucidate the structure and chemical composition of chromosomes. 2+8=10

OR

Give an account of the following (any *two*) : $5 \times 2=10$

(a) Duplication and its consequences

- (b) Cytoskeleton
- (c) Translocations and its significance

BOT/V/CC/13/147

 $3 \times 5 = 15$

[Contd.

2. What are numerical changes in chromosome? Give an account on sources and consequences of chromosomal anomalies. 2+8=10

OR

Give an account of the following (any *two*) : $5 \times 2=10$

- (a) Aneuploidy
- (b) Autopolyploidy
- (c) Segmental allopolyploidy
- **3.** What is karyotype? Elucidate its role in systematics and evolution of species. 2+8=10

OR

Write short notes on any *two* of the following : $5 \times 2=10$

- (a) Self-sterility in plants
- (b) Plastid inheritance in Mirabilis jalapa
- (c) Enhancer and suppressor genes
- **4.** What is plant breeding? Describe the technique and procedure of hybridization. 2+8=10

OR

Write short notes on any *two* of the following : $5 \times 2=10$

- (a) Hybrid vigour
- (b) Molecular basis of mutation
- (c) Physical mutagens
- **5.** What is bioinformatics? Give a basic concept about data and information.

2+8=10

OR

Give an account of the following (any two): $5 \times 2=10$

- (a) Search tools
- (b) DNA sequence analysis
- (c) Protein data

* * *

4

BOT/V/CC/13/147

20G—180