Professional Course Examination (Odd), 2023

(1st Semester)

BACHELOR OF COMPUTER APPLICATIONS

Course No. : BCA/1/CC/04

(Digital Computer Fundamentals)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(PART : A—OBJECTIVE)

(*Marks*: 25)

SECTION—A

		(<i>Marks</i> : 15)
A.	Tick	x (✓) the correct answer in the brackets provided : 1×10=10
	1.	BCD stands for
		(a) binary coded decimal ()
		(b) binary common decimal ()
		(c) basic carrier decimal ()
		(d) based counter decimal ()
	2.	The 10's complement of $(4136)_{10}$ is
		(a) 5841 ()
		(b) 5864 ()
		(c) 5844 ()
		(d) 5874 ()
	3.	A register is a group of suitable for storing binary information.
		(a) counters () (b) adders ()
		(c) flip-flops () (d) substractors ()

4.	What is the octal equivalent of the binary number 10111101?						
	(a) 675 () (b) 275 ()						
	(c) 572 () (d) 573 ()						
5.	Ripple counters are sometimes called						
	(a) synchronous counters ()						
	(b) registers ()						
	(c) asynchronous counters ()						
	(d) program counters ()						
6.	The master-slave J - K flip-flop is effectively a combination of						
	(a) an SR flip-flop and a T flip-flop ()						
	(b) an SR flip-flop and a D flip-flop ()						
	(c) a T flip-flop and a D flip-flop ()						
	(d) two T flip-flops ()						
7.	The output of half adder is in the form of						
	(a) sum ()						
	(b) carry ()						
	(c) sum and carry ()						
	(d) None of the above ()						
8.	How many cells are there in an <i>n</i> -variable K-map?						
0.	(a) $2n$ (b) $2n$ a (c)						
	(c) $2n \ a$ () (d) n^2 ()						
9.	The D flip-flop is a modification of						
	(a) JK flip-flop (b) T flip-flop ()						
	(c) RS flip-flop () (d) clocked RS flip-flop ()						
10.	SR-type flip-flop can be converted into D flip-flop, if S is connected to R through						
	(a) EX-OR gate () (b) inverters ()						
	(c) AND gate () (d) full adder ()						

В.	State whether the following statements are $True(T)$ or $False(F)$ by putting a Tick (\checkmark) mark:						ing 1×5=5
	1.	The other name of D flip-flop is delay flip-flop.					
			(T	/	F)
	2.	Decoders are used for converting one type of numother form.	mbe	r syst	em in	ito '	the
			(T	/	F)
	3.	NAND gate is known as universal gate.					
			(T	/	F)
	4.	Parallel counter is also called shift counter.					
			(T	/	F)
	5.	Boolean algebra obeys distributive law and com	ımut	ative	law.		
			(T	/	F)
		SECTION—II					
		(<i>Marks</i> : 10)					
C.	Ans	swer the following questions :					2×5=10
	1.	(a) What is arithmetic shift?					
		OR					
		(b) What is flip-flop?					
	2.	(a) Construct full adder.					
		OR					
		(b) Construct half adder.					
	3.	(a) Simplify $y (\overline{A} B)(A B)$					
		OR					
		(b) What is error detection code?					

OR (b) Construct 1:4 demultiplexer. 5. (a) What are alphanumeric codes? OR (b) What is combinational circuit? (PART : B—DESCRIPTIVE) (*Marks* : 50) **1.** (a) Convert the $(110101011011)_2$ into octal, hexadecimal, decimal number system. 6 Convert the (5.A08C)₁₆ into octal and binary number system. 4 OR Explain digital computer system with the help of diagram. 5 5 (d) Simplify the following: \overline{A} B \overline{C} (i) \overline{A} \overline{B} \overline{C} (ii) \overline{ABC} $\overline{A}B\overline{C}$ $A\overline{BC}$ $AB\overline{C}$ Simplify the Boolean expression using K-map: 6 F(A, B, C, D, E)*m* (0, 1, 4, 5, 16, 1721, 25, 29) Express the Boolean function F = xy = xz as a product of maxterms. 4 OR Explain two, three and four variable K-maps. 6 (d) Using De Morgan's theorem, prove (A B) A 4 Give the logic symbol and truth table of the following logic gates: 6 (i) OR (ii) NAND (iii) XOR

4

[Contd.

(a) Construct 2:1 multiplexer.

/287

	(b)	Subtract a binary number (1010) from (1111) using 2's complement method.	4
		OR	
	(c)	Implement a Boolean function F \overline{AB} ABC $(\overline{B}$ $\overline{C})$ using logic	
		gates.	5
	(c)	Divide the binary number 110111 by 101.	5
4.	(a)	What is multiplexer? Discuss the working of 4:1 multiplexer with logic circuit and truth table.	6
	(b)	Write a short note on programmable logic array.	4
		OR	
	(c)	Explain the working of full adder with logic diagram, logic circuit and truth table.	6
	(d)	Design a 2- to 4-decoder. Show the truth table with logic diagram.	4
5.	(a)	What is shift register? Explain serial input shift register and parallel input shift register.	6
	(b)	Explain master-slave flip-flop with a suitable logic diagram.	4
		OR	
	(c)	Explain four-bit ripple counter with a timing diagram.	6
	(d)	Differentiate between synchronous counter and asynchronous counter.	4

* * *