PHY/VI/CC/21a

Student's Copy

2022

(CBCS)

(6th Semester)

PHYSICS

NINETEENTH (A) PAPER

(Solid State Physics)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided :

- 1. In a one-dimensional monoatomic lattice vibration, the phase and the group velocities are the same when the wave vector K is such that
 - (a) K () $\overline{2}$
 - (b) K
 - 0 () () (c) K
 - () $\overline{2}$ (d) K
- 2. In the vibrations of a one-dimensional diatomic lattice, the optical and the acoustic branches coincide at K $\frac{1}{2a}$, if

/96

 $1 \times 10 = 10$

3. Above a certain critical temperature, all magnetic materials become

)

- (a) diamagnet (
- (b) paramagnet ()
- (c) ferromagnet ()
- (d) ferrimagnet ()
- **4.** The magnetic susceptibility of a material is small and negative. The material is
 - (a) paramagnet ()
 - (b) diamagnet ()
 - (c) ferrimagnet ()
 - (d) ferromagnet ()
- 5. The electric displacement vector \vec{D} for an isotropic medium is
 - $(a) \vec{D} \quad {}_{0}\vec{P} \quad \vec{E} \qquad ()$ $(b) \vec{D} \quad {}_{0}\vec{E} \quad \vec{P} \qquad ()$ $(c) \vec{E} \quad {}_{0}\vec{P} \quad \vec{D} \qquad ()$ $(d) \vec{E} \quad {}_{0}\vec{D} \quad \vec{P} \qquad ()$
- **6.** A dielectric material is placed in an external electric field \vec{E} . The polarization \vec{P} produced in the material is given by

$$(a) \overrightarrow{P} \quad _{0}\overrightarrow{E} \quad ()$$

$$(b) \overrightarrow{P} \quad _{e}\overrightarrow{E} \quad ()$$

$$(c) \overrightarrow{P} \quad _{0} \quad _{e}\overrightarrow{E} \quad ()$$

$$(d) \overrightarrow{P} \quad _{0} \quad _{e}\overrightarrow{E} \quad ()$$

7. Bloch theorem is applicable to

- (a) constant potential ()
- (b) variable potential ()
- (c) periodic potential ()
- (d) infinite potential ()

[Contd.

- **8.** A solid having a certain number of energy bands completely filled and all other bands completely empty is a/an
 - (a) conductor ()
 - (b) semiconductor ()
 - (c) insulator ()
 - (d) good conductor ()
- **9.** Below a critical field H_c , type I superconductor exhibits
 - (a) perfect paramagnetism ()
 - (b) perfect diamagnetism ()
 - (c) perfect ferromagnetism ()
 - (d) perfect ferrimagnetism ()
- 10. The energy gap in a superconductor is
 - (a) minimum at 0 K ()
 - (b) maximum at 0 K ()
 - (c) independent of temperature ()
 - (d) All of the above ()

(SECTION : B—SHORT ANSWER)

(Marks: 15)

Answer the following questions (any three):

5×3=15

UNIT—I

1. Define phase velocity and group velocity.

OR

2. What are Brillouin zones?

/96

[Contd.

Unit—II

- **3.** Define the following terms :
 - (a) Magnetic susceptibility
 - (b) Magnetic flux density

OR

4. Distinguish between classical theory and quantum theory of paramagnetism.

UNIT—III

5. What are the different sources of polarizability of a dielectric material?

OR

6. Show that

 \vec{P} $_{0}\vec{E}(r 1)$

where the symbols have their usual meanings.

UNIT—IV

7. Explain the concept of forbidden energy bands.

OR

8. Explain the concept of holes.

UNIT-V

9. Describe the isotope effect in superconductors.

OR

10. Explain the concept of BCS ground state.

/96

[Contd.

(SECTION: C-DESCRIPTIVE)

(Marks: 50)

UNIT—I

 Derive the dispersion relation for a one-dimensional monoatomic lattice. Discuss the dispersion behaviour at low and high frequencies.
 6+4=10

OR

 Deduce the dispersion relation for a one-dimensional diatomic lattice. Discuss the nature of acoustic and optical modes.
 6+4=10

UNIT—II

3.	(a)	Explain	the	origin	of	diamagnetism	in	materials.	
----	-----	---------	-----	--------	----	--------------	----	------------	--

(b) Obtain an expression for diamagnetic susceptibility using Langevin's classical theory.7

OR

4.	(a)	Describe	the	quantum	theory	of	paramagnetism	and	obtain	Curie's	
		law.									6

(b) Give an account of Weiss theory of ferromagnetism. 4

Unit—III

5.	(a) What do you mean by local field in a dielectric? Obtain an expression									
	for local electric field at an atom in a dielectric material.									
	(b)	Write a short note on complex dielectric constant. OR	3							
6.	(a)	Discuss the classical theory of electric polarizability and obtain Clausius-Mossotti relation.	4+4							
	(b)	Define dielectric constant. How is it related to electric susceptibility?	1+1							
		UNIT—IV								
7.	Pro give	ve that the motion of electrons through the periodic potential in solids es rise to the band structure.	10							

[Contd.

3

OR

8. What is meant by the effective mass of an electron? What is its significance? Show that the effective mass of an electron in a crystal is inversely proportional to the second derivative of E k curve. Discuss the conditions when the effective mass of an electron becomes positive, negative and infinity. 1+2+4+3

UNIT-V

9.	(a)	What	are	super	conductors	?	What	is	the	difference	between	а	
		condu	ctor	cooled	to 0 K and	d a	a supe	cor	iduct	or?			1+2
	(b)	Give a	qual	itative	description	10	f BCS t	heo	ry of	supercondu	activity. He	ow	

does it account for the superconducting state? 4+3

OR

10.	(a)	Derive	London	equations	and	obtain	an	expression	for	London	
		penetration depth.									4+3

(b) Explain the term critical magnetic field in a superconductor. 3

* * *