2022

(CBCS)

(6th Semester)

MATHEMATICS

TENTH PAPER

(Advanced Calculus)

Full Marks: 75
Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A-OBJECTIVE)

(*Marks*: 10)

Tick (✓) the correct answer in the brackets provided:

 $1 \times 10 = 10$

- **1.** Regarding the condition of intergrability for a function f corresponding to the partition P of an interval [a, b], the incorrect statement is
 - (a) $\lim_{(P) \to 0} S(P, f) = \frac{b}{a} f dx$ ()
 - (b) $\sup L(P,f)$ inf U(P,f) ()
 - (c) $\lim_{(P)} \{U(P, f) \ L(P, f)\} = 0$ ()
 - (d) $\lim_{(P) \to 0} \{U(P, f) \mid L(P, f)\} = 0$ ()
- **2.** For any two partitions P_1 , P_2 of a bounded function f
 - (a) $L(P_1, f) U(P_2, f)$ ()
 - (b) $L(P_1, f) U(P_2, f)$ ()
 - (c) $L(P_2, f) U(P_1, f)$ ()
 - (d) $U(P_2, f) L(P_1, f)$ ()

3. If f and g be two positive functions such that $f(x) = g(x)$, $x = [a, b]$, then	3.	If f and g be two	positive functions	such that $f(x)$	g(x), x	[a, b], then
--	----	-----------------------	--------------------	------------------	-----------	--------------

(a)
$$\int_{a}^{b} g \, dx$$
 converges if $\int_{a}^{b} f \, dx$ converges ()

(b)
$$\int_{a}^{b} f \, dx$$
 converges if $\int_{a}^{b} g \, dx$ converges ()

(c)
$$\int_{a}^{b} f \, dx$$
 diverges if $\int_{a}^{b} g \, dx$ diverges ()

(d)
$$\int_{a}^{b} f dx$$
 and $\int_{a}^{b} g dx$ behave alike ()

4. If a function
$$f$$
 is continuous on $[0, 1]$, then the value of $\lim_{n \to \infty} \frac{1}{1 + n^2 x^2}$ is

(a)
$$\frac{1}{2}f(0)$$
 (b) $\frac{1}{2}f(1)$ (c)

(b)
$$-\frac{1}{2}f(1)$$
 ()

(c)
$$\frac{1}{2}f(n)$$
 (d) $\frac{1}{2}f(n)$

(d)
$$\frac{1}{2}f()$$
 (

5. The value of
$$\int_{0}^{1} \frac{\log (1 - a \cos x)}{\cos x} dx$$
 if $|a| = 1$ is

(a)
$$2 \sin^{-1} a$$
 ()

(b)
$$\sin^{-1} a$$
 ()

(c)
$$2 \sin^{-1} a$$
 ()

6. The value of the improper integral
$$e^{x^2}dx$$
 is equal to 0

(a)
$$\frac{1}{2}$$
 ()

(b)
$$\frac{2}{}$$
 ()

(c)
$$\frac{\sqrt{}}{2}$$
 ()

$$(d) \quad \frac{2}{\sqrt{}} \qquad (\qquad)$$

7.	The value of the integral x^2dx xydy taken along the line segment from				
	(1, 0) to (0, 1) is				
	(a) 0 ()				
	(b) $\frac{1}{6}$ ()				
	(c) 1 ()				
	$(d) \frac{1}{6} \qquad ()$				
8.	The value of the double integral $x^2y^3 dxdy$ over the circle $x^2 + y^2 + a^2$ is				
	(a) 0 ()				
	(b) $\frac{1}{2}$ ()				
	(c) $\frac{1}{2}$ ()				
	(d) $\frac{1}{2}$ ()				
9.	. By M_n -test, the sequence $\{f_n\}$ converges uniformly to f on $[a,b]$ if and only if				
	(a) $M_n = 0$ as $n = 0$ ()				
	(b) M_n as $n = 0$ ()				
	(c) $M_n \inf\{ f_n(x) f(x) : x [a, b]\}$ ()				
	(d) M_n 0 as n ()				
10.	The sequence of function $f_n(x)$ nxe^{-nx^2} is pointwise, but not uniformly convergent on				
	(a) $[0, k]$, where $k = 1$ ()				
	(b) [0,] ()				
	(c) [0,) ()				
	(d) (0,) ()				

(SECTION : B—SHORT ANSWER)

(Marks: 15)

Answer the following questions:

 $3 \times 5 = 15$

UNIT-I

- 1. For the function defined by
 - f(x) 1, when x is rational number 1, when x is irrational number

prove that |f| is R-integrable on any interval [a, b] while f is not integrable.

OR

For the integral x dx, find the upper Riemann integral corresponding to the division of [0, 1] into 6 equal intervals.

UNIT—II

2. Using Frullani integral, evaluate $\int_{0}^{1} \frac{\tan^{-1}(ax) + \tan^{-1}(bx)}{x} dx.$

OR

Prove that $\int_{0}^{\cos x} dx$ is convergent at .

UNIT—III

3. If $f(x, y) = \frac{y^2}{x^2 + y^2}$ and $g(y) = \int_0^1 f(x, y) dx$, then evaluate the value of $\int_0^1 f_y(x, 0) dx$

OR

Evaluate $\frac{dx}{a + b\cos x}$ if a is positive and |b| = a and deduce that

$$\frac{dx}{(a + b\cos x)^2} = \frac{a}{(a^2 + b^2)^{3/2}}$$

UNIT-IV

4. Find the value of line integral $\frac{ydx}{c} \frac{xdy}{x^2}$ around the circle $C: x^2 = y^2 = 1$.

OR

Evaluate the double integral $\begin{pmatrix} 2 & x \\ 0 & x^2 \end{pmatrix} y^2 x dy dx$.

UNIT-V

5. Define pointwise and uniform convergence of a sequence of functions $\{f_n(x)\}$. Give an example to show the distinction between uniform and pointwise convergent.

OR

Prove that the sequence $f_n(x)$ x^n is pointwise convergent on [0, 1] and evaluate the pointwise limit.

(SECTION : C—DESCRIPTIVE)

(*Marks* : 50)

Answer **one** question from each Unit

UNIT—I

- **1.** (a) Show that $f(x) \mid x \mid$ is integrable on [1, 1] and hence evaluate $\int_{1}^{1} f(x) dx$. 5
 - (b) Prove that a necessary and sufficient condition for the integrability of a bounded function f is that to every 0, there exists a corresponding 0 such that

$$U(P, f)$$
 $L(P, f)$

for every partition P of [a, b] with norm (P) .

2. (a) Show that when 1×1 , then

$$\lim_{m} \int_{0}^{x} \frac{t^{m}}{t} dt = 0$$

(b) If a function f is bounded and integrable on [a, b], then prove that the integral function of f defined by $F(t) = \int_a^t f(x) dx$, t = [a, b] is continuous on [a, b]. Furthermore, if f is continuous at a point c = [a, b], then F is derivable at c and F(c) = f(c).

UNIT-II

- 3. (a) Show that $\int_{1}^{1} \frac{\sin x}{x^p} dx$ converges absolutely for p = 1 but conditionally only for 0 = p = 1.
 - (b) Examine the convergence of the following functions : $2\frac{1}{2}+2\frac{1}{2}=5$
 - (i) $\frac{2}{0} \frac{1}{(1-x)^2} dx$
 - (ii) $\frac{2x^2}{x^4} dx$
- **4.** (a) Prove that the improper integral $\int_a^b f(x) dx$ is convergent at a if and only if to every 0 there exists a corresponding 0 such that $\begin{vmatrix} a & 2 \\ a & 1 \end{vmatrix} f(x) dx$ for 0 1, 2
 - (b) Prove that the integral $\int_{1}^{\infty} x^{n-1}e^{-x}dx$ is convergent if and only if n=0.

5

6

UNIT—III

- **5.** (a) Prove that uniformly convergent improper integral of a continuous function is itself continuous.
 - (b) If a b, then show that

$$\int_{0}^{2} \log \frac{1 \cos \cos x}{\cos x} dx \frac{1}{2} \frac{2}{4}$$

6. (a) Examine the uniform convergence of the convergent improper integral

$$\int_{1}^{1} \frac{\cos yx}{\sqrt{1-x^2}} dx \text{ in } (,)$$

(b) Establish the right to integrate under integral sign for $e^{xy}\cos mx \, dx$ and deduce that

$$\frac{e^{-ax} - e^{-bx}}{x} \cos mx \, dx = \frac{1}{2} \log \frac{b^2 - m^2}{a^2 - m^2}, \ a, b = 0$$

UNIT—IV

- **7.** (a) Evaluate $xy(x \ y) dxdy$ over the area between $y \ x^2$ and $y \ x$.
 - (b) Prove that $\frac{1}{0} \frac{1}{(x-y)^3} \frac{(x-y)}{(x-y)^3} dy dx = \frac{1}{2}$, but the value changes its sign as the order of integration interchange.
- 8. (a) Change the order of integration in the integral

$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} \frac{e^{y} dy}{(1-e^{y})\sqrt{1-x^{2}-y^{2}}}$$

and hence evaluate it.

(b) Show that $[(x \ y)^3 dx \ (x \ y)^3 dy] \ 3 \ a^4$, where C is the circle $x^2 \ y^2 \ a^2$ in the counterclockwise sense.

UNIT-V

- **9.** (a) Show by M_n -test that the sequence of function $f_n(x) = \frac{x}{1 nx^2}$, x = R converges uniformly on any close interval I.
 - (b) State and prove Cauchy's criterion of uniform convergence of a sequence $\{f_n(x)\}$ of real valued functions on a set E. 1+5=6
- **10.** (a) Examine the term by term integration of the series whose sum to first $n = n^2 x (1 x)^n$, 0 x 1.
 - (b) If the sequence $\{f_n(x)\}$ of continuous functions is uniformly convergent to a function f on [a, b], then prove that f is also continuous. 5

* * *