MATH/VI/CC/09

Student's Copy

2022

(CBCS)

(6th Semester)

MATHEMATICS

NINTH PAPER

(Modern Algebra)

Full Marks: 75

Time : 3 hours

(SECTION: A-OBJECTIVE)

(Marks: 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the boxes provided :

- **1.** If the order of a group *G* with centre *Z* is p^n , where *p* is a prime number, then
 - (a) $Z = \{e\}$ (b) $Z \neq \{e\}$ (c) Z = e(d) $Z = \phi$
- **2.** The identity element of the quotient group G/H is
 - (a) e (b) 1

 (c) H (d) e / H

[Contd.

3.	The necessary	and	sufficient	conditions	for a	a non-empt	y subset S	of a	ring	R to
	be a subring	are								

	(a)	$a - b \in S$ and $ab \in S$ for all $a, b \in S$					
	(b)	$a-b \in S$ and $a/b \in S$ for all $a, b \in S$					
	(C)	$a + b \in S$ and $a/b \in S$ for all $a, b \in S$					
	(d)	$a + b \in S$ and $ab \in S$ for all $a, b \in S$					
4.	An	ideal S of the ring of integers I is maximal if S is generated by					
	(a)	(b) = 0					
	(c)	$12 \qquad (d) 15 \qquad \Box$					
_	(-)						
5.	An	non-zero integer has					
	(a)	no associates \Box					
	(b)	exactly one associate \Box					
	(c)	infinite number of associates \Box					
	(d)	exactly two associates \Box					
_	Ŧ						
6.	In 1	the ring of integers, the greatest common divisors of 5 and 10 are					
	(a)	1 and 5 \square (b) 1 and -5 \square					
	(C)	5 and -5 \Box (d) -1 and 5 \Box					
7.	Wh	Which of the following statements is false?					
	(a)	Every superset of a linearly dependent set of vectors is linearly					
		dependent 🗌					
	(b)	There exists a basis for each finite dimensional vector space. $\hfill \Box$					
	(c)	A system consisting of a single non-zero vector is always linearly independent. $\hfill \square$					
	(d)	Every linearly dependent subset of a finitely generated vector space $V(F)$ forms a part of a basis of V .					

- **8.** The necessary and sufficient conditions for a vector space V(F) to be a direct sum of its two subspaces U and W are
 - (a) V = U + W and $U \cap W = \{0\}$
 - (b) V = UW and $U \cap W = \{0\}$
 - (c) V = U + W and $U \cap W \neq \{0\}$
 - (d) V = U + W and $U \cap W = 0$
- **9.** If a linear transformation $T: \mathbb{R}^7 \to \mathbb{R}^3$ has 4-dimensional kernel, then the dimension of range space of T is

(a)	3	(b)	10	
(C)	4	(d)	11	

10. Let T be a linear transformation from a vector space U into a vector space V, where dimension of U is 2n, then Rank (T) + Nullity (T) =

(a)	1	(b) n	
(C)	2n	(d) n^2	

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Each question carries 3 marks

Answer the following questions :

Unit—I

1. If *H* is a subgroup of *G* and *N* is a normal subgroup of *G*, then show that $H \cap N$ is a normal subgroup of *H*.

OR

2. If the order of a group G is p^2 , where p is a prime number, then prove that G is Abelian.

Unit—II

3. Prove that every field is an integral domain.

OR

4. If F is a field, then prove that its only ideals are (0) and F itself.

UNIT—III

5. Find all the units of the integral domain of Gaussian integers.

OR

6. Prove that the necessary and sufficient condition for a non-zero element *a* in the Euclidean ring *R* to be a unit is that d(a) = d(1).

UNIT—IV

7. In $V_3(R)$, where R is the field of real numbers, show that the set of vectors $\{(1, 2, 0), (0, 3, 1), (-1, 0, 1)\}$ is linearly independent.

OR

8. Show that the kernel of a homomorphism of a vector space is a subspace.

UNIT-V

9. Show that the function $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (1 + x, y) is a linear transformation.

OR

10. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map defined by T(x, y) = (4x - 2y, 2x + y). Find the matrix representation of *T* relative to the ordered basis {(1, 1), (-1, 0)}.

/88

(SECTION: C-DESCRIPTIVE)

(Marks : 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

1.	(a)	Prove that a subgroup H of a group G is a normal subgroup of G if and only if each left coset of H in G is a right coset of H in G .	4
	(b)	Prove that every homomorphic image of a group G is isomorphic to some quotient group of G .	6
2.	(a)	Define inner automorphism. Show that for an Abelian group, the only inner automorphism is the identity mapping whereas for non-Abelian groups, there exist non-trivial automorphisms. 1+3	3=4
	(b)	If H is a normal subgroup of a group G and K is a normal subgroup of G containing H , then prove that	
		$G \ / \ K \cong (G \ / \ H) \ / \ (K \ / \ H)$	6
		UNIT—II	
3.	(a)	Prove that every finite integral domain is a field.	6
	(b)	Prove that the characteristic of an integral domain is either 0 or a prime number.	4
4.	(a)	Show that a commutative ring with unity is a field if it has no proper ideal.	4
	(b)	Prove that in a commutative ring R , an ideal S of R is prime if and only if the ring of residue classes R/S is an integral domain.	6
		Unit—III	
5.	(a)	Define kernel of a ring homomorphism. Let f be a homomorphism of a ring R into a ring R' . Show that the kernel of f is an ideal of R . 1+4	l=5

(b) Let D be an integral domain with unity element 1. Show that two non-zero elements $a, b \in D$ are associates if and only if a/b and b/a. 5

6. (a) Let a and b be any two elements of a Euclidean ring R, not both of which are zero. Prove that a and b have a greatest common divisor d which can be expressed in the form

$$d = \lambda a + \mu b$$
 for some $\lambda, \mu \in R$ 6

(b) If a is a prime element of a unique factorization domain R and b, c are any elements of R, then prove that

$$a/bc \Rightarrow a/b \text{ or } a/c$$
 4

- **7.** (*a*) Prove that the union of two subspaces is a subspace if and only if one is contained in the other.
 - (b) If V(F) is a finite dimensional vector space, then show that any two bases of V have the same number of elements.
- **8.** (a) If U and W are two subspaces of a finite dimensional vector space V(F), then prove that

$$\dim (U+W) = \dim U + \dim W - \dim (U \cap W)$$
⁷

(b) Show that the vectors (1, 1, 2), (1, 2, 5), (5, 3, 4) do not form a basis of R^3 .

9. (*a*) Let *V* and *W* be vector spaces over the same field *F* and let *T* be a linear transformation from *V* into *W*. If *V* is finite dimensional, then prove that

Rank
$$T$$
+ Nullity T = dim V 6

(b) Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be a linear transformation defined by

$$T(x, y, z, t) = (x - y + z + t, x + 2z - t, x + y + 3z - 3t)$$

Find the range space, null space, rank of T and nullity of T.

/88

4

4

6

3

10. (a) Let V and U be vector spaces over the field K. Let $\{v_1, v_2, ..., v_n\}$ be a basis of V. If $\{u_1, u_2, ..., u_n\}$ be a set of arbitrary vectors in U, then show that there exists a unique linear transformation $F: V \to U$ such that

$$F(v_j) = u_j$$
 for $j = 1, 2, ..., n$ 6

(b) Find the matrix representation of linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T(x, y, z) = (x + z, -2x + y, -x + 2y + z)$$

relative to the basis $\{(1, 0, 1), (-1, 1, 1), (0, 1, 1)\}$.

* * *

4