2022 (CBCS) (6th Semester)

CHEMISTRY

TWELFTH (B) PAPER

(Natural Products)

Full Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE) (*Marks*: 10)

Tick (✓) the correct answer in the brackets provided :

 $1 \times 10 = 10$

- **1.** Sesquiterpenes consist of _____ isoprene units. (a) two ()
 - (b) three ()
 - (c) four ()
 - (d) five ()
- 2. An alkaloid which can be isolated by steam distillation is
 - (a) reserpine ()
 - () (b) atropine
 - (c) vinblastine ()
 - (d) nicotine ()

3. In mass spectrometry, the loss of methyl radical from the molecular is common if the molecule has				
	(a) CH ₃ group () (b) OCH ₃ group ()			
	(b) OCH ₃ group ()			
	(c) NH ₂ CH ₃ group ()			
	(d) None of the above ()			
4.	In the analysis of terpene, UV-vis spectra gives useful information regarding			
	(a) the number of double bonds ()			
	(b) degree of substitution of double bonds ()			
	(c) Both (a) and (b) ()			
	(d) Neither (a) nor (b) ()			
5.	The total number of chiral centers in rotenone is			
	(a) three ()			
	(b) four ()			
	(c) five ()			
	(d) six ()			
6.	In morphine, the C-5 oxygen bridge and the C-6 hydroxyl bridge are			
	(a) syn- to each other ()			
	(b) anti- to each other ()			
	(c) trans- to each other ()			
	(d) cis- to each other ()			
7.	In Wesley-Moser rearrangement, demethylation is brought about by			
	(a) hydriodic acid ()			
	(b) hydrochloric acid ()			
	(c) perchloric acid ()			
	(d) peracids ()			

8.	8. Pheromones are chemical compounds which can be detected						
	(a)	at moderate concentrations only ()					
	(b)	only at high concentrations ()					
	(c)	even at low concentrations ()					
	(d)	None of the above ()					
9.	Wh	ich one of the following is an example of chiral marine natural product?					
	(a)	Didemnenone A ()					
	(b)	Paraconic acid ()					
	(c)	Corey lactone benzoate ()					
	(d)	(–)-khusimone ()					
10. The key intermediate in the production of isoflavonoid phytoalexins i							
	(a)	naringenin ()					
	(b)	hydrogenistein ()					
	(c)	liquiritigenin ()					
	(d)	daidzein ()					
		(SECTION : B—SHORT ANSWER)					
		(<i>Marks</i> : 15)					
Ans	wer 1	the following questions: 3×5=15					
		Unit—I					
1.	1. What are benzylisoquinoline alkaloids? Give one example.						
	OR						
2.		te the name and structure of a tetraterpenoid which is responsible the deep red colour of ripe tomato.					

3

/82

[Contd.

UNIT—II

3. What do you understand by multiplicity of signals in ¹H NMR spectra?

OR

4. Mention one advantage and one disadvantage of mass spectrometry over other spectrometry.

UNIT—III

5. How will you distinguish between *S* and *R* isomers of benzylisoquinoline alkaloids?

OR

6. Explain why neomenthyl chloride reacts 200 times faster than menthyl chloride in E_2 elimination reaction.

UNIT-IV

7. Explain how a cabbage gives exclusive but restricted feeding rights to the cabbage butterfly while repelling other insects.

OR

8. Explain how even small change in structure of a pheromone could result in large in its physiological profile.

UNIT-V

9. Name an antihypertensive alkaloid isolated from *Rauwolfia serpentina*. Write its structure.

OR

10. Name one paraconic acid. Write its structure and mention its medicinal values.

(SECTION : C—DESCRIPTIVE)

(*Marks* : 50)

UNIT—I

1. (a) Write the name and structure of a tertiary alcohol (sesquiterpene) which is a component of Peru balsam.

2

(b) Mention three general properties of terpenes.

3

(c) Starting from R-(-)-Mevalonic acid, describe the biosynthesis of geranylgeranyl pyrophosphate (GGPP) (the precursor of all diterpenes).

5

OR

2. (a) How is UV-spectroscopy useful in alkaloid detection?

2

(b) Why is it not possible to devise an isolation procedure suitable for the extraction of all types of alkaloids?

3

Explain Hoffmann degradation of alkaloids. What are its limitations?

5

UNIT—II

3. (a) What do you understand by multiplicity of signals?

3

(b) Calculate the absorption maximum in the UV spectra of -carotene, (A) recorded in hexane.

3

$$(A)$$

(c) Discuss the advantage of spectroscopic method over classical method for the structure elucidation of organic compounds.

4

4. (a) How will you distinguish between cyclic and acyclic compounds using

/82		6 [Con	ntd
	(c)	Write the names and structures of all the stereoisomers of menthol.	4
	(b)	Write the structure of vinblastine. Mention its medicinal uses.	3
6	(a)	Write the structure of rotenone. How many chiral centers does it have? Identify them.	3
		OR	
	(c)	Elucidate the absolute stereochemistry of (-)-abietic acid.	5
	(b)	Write the structure of morphine and identify the chiral centers.	3
5.	(a)	Explain why the skeletal structure of naturally occurring germacranolides could assume different stereochemical shapes.	2
		Unit—III	
		(B)	
	(c)	The mass spectrum of -pinene (B) gives m/z values at 136, 106, 93 and 77. How will you account for this?	5
	(b)	What are the advantages of using ¹³ C NMR spectroscopy in structure elucidation of organic compounds?	3
		IR spectra?	2

UNIT—IV

- **7.** (a) Explain why molecular rearrangement of N-methyl paparent chloride to N-methyl pavine called a molecular yoga.
 - 3

3

(b) Identify the missing compound, X:

$$H_3CO$$
 6
 5
 4
 3
 1
 OCH_3
 OCH_3

(c) What are defensive secretions of insects? Explain how *Anisomorpha* buprestoides defend itself against predators.

OR

- **8.** (a) What are insect pheromones? How are they classified?
- 2

3

5

4

- (b) Explain why defensive secretions are important for the very survival of the species.
 - acid
- (c) Discuss with mechanism rearrangement of morphine in the acid catalyzed reaction resulting in the formation of apomorphine :

Morphine

Apomorphine

- **9.** (a) What are semiochemicals?
 - (b) Explain how morphinandienone alkaloids are produced by species of the genus *Papaver*. Write the structure of one such alkaloid.
 - (c) What are the steps involved in the biosynthesis of (S)-norcoclaurine from L-phenylalanine?

L-phenylalanine

S-norcoclaurine

2

5

2

2

OR

10. (a) Identify the missing compound Y, an intermediate in the synthesis of hexadecanolide, a semiochemical from oriental hornet (Vespa orientalis).

O O
$$\frac{1. p\text{-TsCl/py}}{2. C_{10}H_{21}MgBr/CuBr} \rightarrow Y$$

$$3. H^{+}$$

- (b) Write the name and structure of first member of benzylisoquinoline alkaloids family.
- (c) Explain the steps involved in the biosynthetic transformation of 1,2-dehydroreticulinium ion to thebaine.

* * *

/**82** 8 22G