ECO/V/CC/07

Student's Copy

2022

(CBCS)

(5th Semester)

ECONOMICS

SEVENTH PAPER

(Quantitative Techniques—I)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

Simple calculator can be used in this paper

(SECTION: A-OBJECTIVE)

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

1. A set which contains no elements is

(a) null set or empty set () (b) universal set () (c) equivalent set () (d) finite set () **2.** If A and B are sets and A B A B, then (a) A () (b) B () (c) A B) ((d) None of the above ()

/81

- **3.** Differential calculus can be used to solve problems in cases where economic relationships are expressed in the form of
 - (a) a graph ()
 - (b) an equation ()
 - (c) a table ()
 - (d) None of the above ()
- **4.** Given the function $y \quad 5x^4 \quad 2x^3 \quad 10x^2 \quad 2x \quad 6$, the third-order derivative is
 - (a) $20x^3$ $6x^2$ 20x 2 ()
 - (b) $120x \ 12$ ()
 - *(c)* 120 ()
 - (d) 0 ()

5. Producer's surplus can be obtained by integrating

- (a) supply function ()
- (b) demand function ()
- (c) revenue function ()
- (d) cost function ()

6. An integral that possesses no definite numerical views is termed as

(a) an indefinite integral ()

- (b) a definite integral ()
- (c) partial integral ()
- (d) None of the above ()

/81

7. If $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, what is trace of A(tr A)? (a) 3 () (b) 4 () (c) 5 () (d) 6 ()

8. Identify the singular matrix.

(a)	0 1	1 0	()	
(b)	1 0	0 1	()	
(c)	1 3	2 4	()	
(d)	$\frac{1}{2}$	2 4	()	

9. The linear function of the variables which is to be maximized or minimized is called

- (a) constraint ()
- (b) objective function ()
- (c) decision variable ()
- (d) non-negativity constraint ()

10. The feasible region of a linear programming problem is

/81

(SECTION : B—SHORT ANSWER)

(Marks: 15)

Answer the following :

 $3 \times 5 = 15$

Unit—I

1. Distinguish between equal sets and equivalent sets.

OR

2. What are single and multivalued functions?

UNIT—II

3. Write the inter-relationship among total, marginal and average revenues.

OR

4. What are the first-order and second-order conditions for optimization?

UNIT—III

5. Define consumer's surplus.

OR

6. What is meant by definite integral?

UNIT—IV

7. Differentiate between determinant and matrix.

OR

8. What is rank of a matrix?

UNIT-V

9. Explain feasible and basic solutions.

OR

10. Formulate the dual problem of the following LPP :

Max Z $7x_1$ $9x_2$

subject to

 $\begin{array}{rrrrr} x_1 & 2x_2 & 15 \\ x_1 & 3x_2 & 12 \\ x_1, & x_2 & 0 \end{array}$

/81

(SECTION : C-DESCRIPTIVE)

Answer the following :

UNIT—I

1.	(a)	Define dependent and independent variables.	3			
	(b)	Distinguish between finite and infinite sets with example.	3			
	(c)	State and prove the distributive laws of union and intersection by using the following sets :	4			
		$A \{2, 3\} B \{1, 3, 4\} C \{3, 5, 7\}$				
OR						
2.	(a)	Find the Cartesian products AB and BA from the following :	3			

$$A \{0, 1\}, B \{3, 2\}$$

- (b) In a class of 50 students, 30 students take Mathematics, 25 students take Economics and 10 take both. Find the number of students taking neither of the two subjects.
- (c) If the demand and supply functions for a commodity are given by Q_d 10P 6 and Q_s 4P 12 respectively, find (i) the equilibrium price and quantity and (ii) the market demand and supply at the price of ₹ 25. 2+2=4

3. (a) Find the derivatives of the following :

(i)
$$y \quad 3x^4 \quad e^{7x} \quad 9\log x \quad 3$$

(ii) $y \quad \frac{(x^3 \quad 3x^2)}{x^2 \quad 2}$

- (b) Find the partial derivatives of the function $z = 3x^2 xy + 4y^2$. 2
- (c) Given $y = x^2 2x = 1$, determine whether the function is maximum or minimum. 4

/81

10×5=50

3

2+2=4

OR

/81		6 [Con	td.
7.	(a)	What is idempotent matrix?	2
		UNIT—IV	
	(c)	If MR = 100 Q , then find the total revenue function.	2
	(0)	will be the consumer's surplus?	4
	(b)	Given the demand function $n = 35 - 2r - r^2$ the demand r_0 is 3 what	Т
6.	(a)	If the marginal cost function of a firm is 100 $10x \ 0 \ 1x^2$, where x is the output, obtain the total cost function of the firm under the assumption that its fixed cost is $\overline{\epsilon}$ 500	4
		OR	
		(iii) $(3 \ 2x)(2x \ 3) dx$	
		(ii) (5 2x) dx	
		(i) $\frac{5}{2} 2x dx$	
	(b)	Evaluate the following (any <i>two</i>) : 3×2^{-1}	=6
5.	(a)	Find the producer's surplus for the supply function $P = 10 = 2x$, when the equilibrium price for the product is $\stackrel{\texttt{P}}{\stackrel{\texttt{P}}{=}} 20$.	4
		UNIT—III	
	(c)	Given the demand function Q 150 15 P , where P is the price. Find the elasticity of demand at P 4.	3
		(<i>ii</i>) Verify that at a minimum of AC, $AC = MC$. $3+2=$	=5
		(i) Find at what level of output AC is minimum.	
	(b)	The total cost function is given by $C Q^3 12Q^2 60Q$.	
4.	(a)	Given AR 60 3 <i>Q</i> , find the total revenue function and the marginal revenue function.	2

(b) Given A $\begin{array}{c} 1 & 2 \\ 3 & 4 \end{array}$; B $\begin{array}{c} 1 & 2 \\ 2 & 1 \end{array}$, find (i) 2A 3B and (ii) AB. 2+2=4 (c) Obtain the inverse of matrix A $\begin{array}{c} 3 & 4 \\ 1 & 2 \end{array}$.

OR

8. (a) Write the basic properties of determinants.4(b) Solve the following equation system :6 $3x \ 2y \ 3z \ 8$ 6

UNIT-V

9. Use graphical method to solve the linear programming problem. Also indicate the feasible region : 8+2=10

Maximize Z $6x_1$ $21x_2$ subject to x_1 $2x_2$ 3 x_1 $4x_2$ 4 $3x_1$ x_2 3 x_1 $0, x_2$ 0

OR

10. What is meant by dual? What are the main assumptions of the technique of linear programming? 2+8=10

* * *