CHEM/VI/CC/18

Student's Copy

2022

(CBCS)

(6th Semester)

CHEMISTRY

TENTH PAPER

(Organic Chemistry—III)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided :

- 1. The absorption of UV-radiation by a molecule causes
 - (a) only vibrational excitation ()
 - (b) only rotational excitation ()
 - (c) only electronic excitation ()
 - (d) vibrational, rotational and electronic excitation ()
- 2. In carbonyl compounds, the absorption of UV-light at 285 nm causes

(a) n transition () (b)transition () (c) n transition () (d)transition ()

[Contd.

 $1 \times 10 = 10$

3. Which of the following statements is wrong for pericyclic reaction?

- (a) It is stereospecific. ()
- (b) It is initiated by heart or light. ()
- (c) It is stereoselective. ()
- (d) It is a concerted reaction. ()

4. The ground-state HOMO of 1,3-butadiene is having

- (a) m-symmetry ()
- (b) C_2 -symmetry ()
- (c) three nodes ()
- (d) two nodes ()

5. Alkyl magnesium halide reacts with ketone to give

- (a) carboxylic acid ()
- (b) primary alcohol ()
- (c) secondary alcohol ()
- (d) tertiary alcohol ()
- **6.** When sulphonic acids are heated with dilute mineral acids at about 150 °C in the presence of superheated steam, the —SO₃H group is replaced by
 - *(a)* —OH ()
 - *(b)* H₂O ()
 - *(c)* —H ()
 - $(d) SO_2$ ()

7. Cyclohexanone oxygenase enzyme is typically used as

- (a) oxidizing agent ()
- (b) reducing agent ()
- (c) hydroxylating agent ()
- (d) hydrating agent ()

[Contd.

8. The % atom economy in the reaction

is

- (a) 1 ()
- (b) greater than 100 ()
- *(c)* 100 ()
- (d) less than 100 ()

9. The number of signals produced by 2,2-dimethyl propane is

10. The NMR spectroscopy is useful for the detection of

- (a) aromaticity ()
- (b) geometrical isomers ()
- (c) hydrogen bonding ()
- (d) All of the above ()

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following questions :

Unit—I

1. Explain singlet and triplet states of an electron.

OR

2. Write a note on quenching in photochemical reaction.

/80

[Contd.

 $3 \times 5 = 15$

UNIT—II

3. Explain conrotatory and disrotatory motions of - or -MO in an electrocyclic reaction by taking suitable examples.

OR

4. "The $\begin{bmatrix} s \\ 2 \end{bmatrix}$ cycloaddition reaction is photochemically allowed but thermally forbidden." Explain.

UNIT—III

5. Grignard's reagent reacts with CO_2 to give carboxylic acid but organolithium with CO_2 gives ketone as the major product. Explain with suitable example.

OR

- 6. Write the products of the following reactions :
 - (i) C_2H_5Br KSH ?
 - (*ii*) (CH₃)₂CO HS—CH₂CH₂—SH ^H ?
 - (iii) $R_2S 2H_2O OH$?

UNIT—IV

7. Explain % yield and % atom economy of a chemical reaction.

OR

8. Describe green method of Michael addition reaction taking suitable example.

UNIT-V

9. Explain base peak and molecular ion peak in mass spectrometry.

OR

10. Explain shielding and deshielding of protons in ${}^{1}H_{NMR}$ spectra.

/80

[Contd.

(SECTION : C—DESCRIPTIVE)

(Marks: 50)

UNIT—I

- **1.** (a) Draw Jablonski diagram and explain the following :
 - (i) Vibrational relaxation
 - (ii) Internal conversion
 - (iii) Intersystem crossing
 - (iv) Fluorescence
 - (v) Phosphorescence
 - (b) Explain Norrish type–I reaction. Write the Norrish type–I product of the given reaction : 1+3=4

OR

- **2.** (a) Explain Paterno-Buchi reaction taking suitable example. 4
 - (b) Complete the following reactions with suitable mechanism : $3 \times 2=6$

UNIT—II

3. (a) Based on FMO approach, predict the product and stereochemistry of the following reactions : 3×2=6

/80

[Contd.

6

(b) Based on Woodward-Hoffmann rule, explain the electrocyclic interconversion of cyclobutene to 1,3-butadiene system.

OR

 (a) Based on FMO approach, predict the product and stereochemistry of the following reactions : 3×2=6

- (b) Based on Woodward-Hoffmann rule, explain the [4+2] cycloaddition reaction.
- (c) Explain Norrish type-II reaction taking suitable example.

UNIT-III

5. (a) Write the preparation of organolithium compounds and complete the following reaction : 1+2=3

(b) Complete the following reaction with suitable mechanism :

(c) Complete the following reactions : 2×2=4

(i) RMgX R COOR ?

(ii) RMgX R—OH ?

/80

[Contd.

2

3

OR

- (i) $CH_3COCl + Et_2Zn \longrightarrow$? (ii) $\bigcirc -CH_2 - C \longrightarrow + \bigcirc -Li \longrightarrow$? (iii) $\bigcirc -SO_3H + SOCl_2 \longrightarrow$? (b) Write one preparation of each of the following : $2 \times 2 = 4$ (i) Benzenesulphonamide
 - (ii) Sulphaguanidine

6. (a) Complete the following reactions :

UNIT-IV

7. (a) What is aldol condensation reaction? Write an example of green method for aldol condensation reaction. 1+2=3
(b) Write the preparation of butyraldehyde by sonication method. 3
(c) Complete the following reactions : 2×2=4

(i)
$$H_2O$$

 H_2O
 $pH>7$?
(ii) H_2O
 $pH>7$?

OR

- **8.** (a) Briefly explain microwave-assisted Hoffmann elimination reaction. 3
 - (b) Predict the major and minor products based on relative migratory aptitude for the given reaction :3

$$\begin{array}{c} \bigcirc & \bigcirc \\ & \bigcirc \\ - & & \bigcirc \\ - & &$$

/80

 $2 \times 3 = 6$

(c) Write the products of the following reactions :

UNIT-V

- **9.** (a) A compound (C_8H_{10}) shows a prominent peak of m/z value at 106, 91, 65 in its mass spectra. Show the entire fragmentation pattern and determine its molecular structure.
 - (b) Distinguish between *cis* and *trans*-stilbene on the basis of ${}^{1}H_{NMR}$ spectroscopy.
 - *(c)* Acetylenic protons are more shielded than ethylenic protons although the former are attached to a more electronegative *sp*-carbon. Explain.

OR

10. (a) Write the possible fragmentation and related m/z value of benzene molecule in mass spectrometry.
(b) Explain McLafferty rearrangement in mass spectrometry taking suitable example.
(c) Draw the high resolution ¹H_{NMR} spectra of the following : 2×2=4 (i) Anhydrous ethanol (ii) Toluene

* * *

22G

3

3

2×2=4