Student's Copy

BCA/2/CC/08

Professional Course Examination, May 2023

(2nd Semester)

BACHELOR OF COMPUTER APPLICATIONS

(Discrete Mathematics)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(PART : A—OBJECTIVE)

(Marks: 25)

SECTION-I

(*Marks*: 15)

A. Tick (\checkmark) the correct answer in the brackets provided : $1 \times 10 = 10$

1. Two sets A and B are said to be intersecting if

(a) $A \cap B = \phi$ () (b) $A \cap B \neq \phi$ () (c) $A \cup B = \phi$ () (d) $A \cup B \neq \phi$ ()

/471

[Contd.

- 2. If A and B are two sets such that n(A) = 24, n(B) = 22 and $n(A \cap B) = 8$, then n(B A) is
 - *(a)* 10 ()
 - *(b)* 12 ()
 - *(c)* 14 *()*
 - (d) 16 ()
- 3. In the conditional statement, $P \rightarrow Q$, the statement P is called
 - (a) hypothesis ()
 - (b) conclusion ()
 - (c) antecedent ()
 - (d) consequent ()

4. Which of the following is **not** a statement?

- (a) Close the door ()
- (b) The earth is round ()
- (c) India is a country ()
- (d) 4 + 7 > 15 ()

5. 0!=?

- (a) 0 ()
- (b) -1 ()
- (c) 1 ()
- (d) None of the above ()

/471

[Contd.

- 6. How many permutations of the letters of the word 'APPLE' are there?
 - (a) 30 ()
 - *(b)* 40 ()
 - *(c)* 50 ()
 - (d) 60 ()
- 7. The value of x satisfying $3x \equiv 2 \pmod{5}$ is
 - (a) 2 ()
 - *(b)* 1 ()
 - *(c)* 4 *()*
 - (d) 3 ()
- 8. The linear combination of gcd(252, 198) = 18 is
 - (a) 252 * 4 198 * 5 ()
 - (b) 252*5-198*4 ()
 - (c) 252*5-198*2 ()
 - (d) 252*4 198*4 ()
- 9. A graph is a set of points, called
 - *(a)* lines ()
 - (b) fields ()
 - (c) edge ()
 - (*d*) nodes ()

/471

- 10. Self loops are counted
 - (a) once ()
 - (b) twice ()
 - *(c)* thrice ()
 - (d) multiple times ()
- **B.** Indicate whether the following statements are *True (T)* or *False (F)* by putting a Tick (✓) mark in the brackets provided : 1×5=5
 - 1. In a Boolean algebra *B*, for all *x*, *y* in *B*, $x \cdot (x + y)$ is equal to *x*. (*T* / *F*)
 - 2. The proposition $(P \Rightarrow Q) \land (Q \Rightarrow P)$ is a tautology.

(T / F)

- 3. If ${}^{n}P_{r} = 720$, ${}^{n}C_{r} = 120$, then *r* is equal to 3.
- (T / F)

4. The inverse of 3 modulo 7 is -2.

(T / F)

5. A graph G is bipartite, then the chromatic number of G is 3. (T / F)

/471

[Contd.

SECTION—II

(*Marks* : 10)

- C. Answer the following questions :
 - (a) A survey shows that 73% of the Indians like apples, whereas 65% like oranges. What percentage of Indians like both apples and oranges?

OR

- (b) In a Boolean algebra B, show that a + 1 = 1.
- 2. (a) Write the truth table of ~ (~ $p \land q$).

OR

- (b) Write a truth table of $p \rightarrow (q \land \sim p)$.
- 3. (a) Expand $(3x + 2y)^4$ by binomial theorem.

OR

- (b) If ${}^{n}C_{7} = {}^{n}C_{5}$, find *n*.
- 4. (a) Suppose a and c are relatively prime integers and b is an integer such that b|c. Prove that gcd (a, b) = 1.

OR

- (b) Solve : $6x \equiv 4 \pmod{10}$.
- 5. (a) What are multigraph and weighted graph?

OR

(b) Define a planar and non-planar graph.

[Contd.

2×5=10

(**PART** : **B**—DESCRIPTIVE)

(Marks: 50)

D. Answer the following questions :

 (a) A class has 175 students. The following description gives the number of students studying one or more of the subjects in this class :

Mathematics 100, Physics 70, Chemistry 46, Mathematics and Physics 30, Mathematics and Chemistry 28, Physics and Chemistry 23, Mathematics, Physics and Chemistry 18.

Find *(i)* how many students are enrolled in Mathematics alone, Physics alone and Chemistry alone and *(ii)* the number of students who have not offered any of these subjects. 3+3=6

(b) If $A = \{x: x \in N, x \le 7\}$, $B = \{x: x \text{ is a prime, } x < 8\}$, and $C = \{x: x \in N, x \text{ is odd and } x < 10\}$, verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

OR

2. (a) In a Boolean algebra
$$(B, +, \cdot, ')$$
, prove that
 $(a + b)' = a' \cdot b'$ and $(a \cdot b)' = a' + b'$
5

- (b) Construct the switching table for the switching function frepresented by the Boolean expression xyz + x'(y + z). 5
- 3. (a) Construct a truth table for the statement formula

$$(p \land \neg q) \lor (q \land (\neg p \lor r))$$
5

(b) Verify by truth table,
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$
.

OR

4. (a) Prove that
$$p \to q$$
, ~ $p \to q \models q$. 5

(b) Construct a truth table for the statement : 5

$$(p \rightarrow (q \rightarrow r)) \rightarrow ((p \land q) \rightarrow r)$$

/471

5

5. (a) Find the two middle terms in the expansion of

$$\left(3x - \frac{2}{x^2}\right)^{15}$$

(b) Find the 10th term in the expansion of

$$\left(\frac{a}{b} - \frac{2b}{a^2}\right)^{12}$$
 5

OR

6. (a) Find the 5th term from the end in the expansion of

$$\left(x - \frac{1}{x}\right)^{12}$$

(b) If
$${}^{20}C_r = {}^{20}C_{r+6}$$
, find r.

- 7. (a) Find (26, 118) and express it in the form of 26x + 118y, where $x, y \in Z$.
 - (b) Prove that the relation 'congruence modulo m' is an equivalence relation in the set of integers.

OR

- 8. *(a)* State and prove Fermat's theorem. 6
 - (b) Write the statement of Euler's Lemma. Compute gcd (803, 154). 4
- 9. (a) Using Kruskal's algorithm, find the minimum spanning tree for the weighted graph of the figure :

(b) Prove that a tree with n vertices has (n-1) edges.

/471

[Contd.

5

5

5

6

4

OR

10. *(a)* Write the adjacency matrix and incidence matrix for the following graph :

(b) Define tree. Prove that a tree T is always separable.

* * *

6

4