PHY/VI/CC/21a

Student's Copy

2023

(CBCS)

(6th Semester)

PHYSICS

TWELFTH (A) PAPER

(Solid-State Physics)

Full Marks: 75

Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(*Marks* : 10)

Tick (\checkmark) the correct answer in the brackets provided :

1. In a monatomic one-dimensional lattice vibration, the lattice wave behaves like a standing wave without transfer of energy when

(a)
$$2\sqrt{m}/$$
 ()
(b) $2\sqrt{/m}$ ()
(c) $v \sqrt{m}/$ ()
(d) $v \frac{1}{\sqrt{/m}}$ ()

/415

1×10=10

3.	The	spontaneous	magnetisation	of	ferromagnetic	material	at	Curie
	temperature is							

<i>(a)</i> 0	()	<i>(b)</i> 1 ()
(c)	()	(d) 1/2	()

4. The internal Weiss field, which arises due to the overlapping of the wave function of two neighbouring atoms in ferromagnetic material, is of the order of

(a)	500 T	()	(b)	1000 T	()
(c)	1500 T	()	(d)	5000 T	()

5. Which of the following is the fastest polarisation process?

- (a) Electronic polarisation (
- (b) Ionic polarisation ()
- (c) Space charge polarisation (
- (d) Orientation polarisation ()

6. When a dielectric is placed in external electric field, the induced dipole moment develops per unit volume is called

)

)

- (a) polarisation ()
- (b) polarisability ()
- (c) permeability ()
- (d) susceptibility ()

7. Valence band comprises of

- (a) electrons that are freely moving inside the solid ()
- (b) electrons that are in the outermost orbit of the atom ()
- (c) mobile electrons ()
- (d) It contains no electron ()

)

8. The K-electron of copper atom is lightly bound to nucleus. Its effective mass is

(a) m_e 0 () (b) m_e () (c) m_e m_e () (d) 0 m_e (

/415

[Contd.

9. The magnetic susceptibility of a superconductor

(a) has a positive value () (b) 0 as T $T_{\rm c}$ () (C) as T $T_{\rm c}$ () (d) has a negative value ()

10. According to BCS theory, the zero resistance of superconductors arises due to

(a)	presence of phonon scattering	()
(b)	increase of phonon scattering	()
(C)	decrease of phonon scattering	()
(d)	absence of phonon scattering	()

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Answer the following questions :

UNIT—I

1. Show that group and phase velocities are equal in vibration of monatomic linear lattice for long wavelength.

OR

2. What are phonons? Give two points each of similarity and dissimilarity between phonons and photons.

UNIT—II

3. Explain how in diamagnetic material the induced magnetic flux is opposite to the inducing applied magnetic field.

OR

4. What is Curie-Weiss law? What is the significance of Curie temperature?

3

/415

[Contd.

 $3 \times 5 = 15$

UNIT—III

5. Write a short note on anomalous dispersion.

OR

6. Find a relation between relative permittivity and susceptibility of a dielectric.

UNIT—IV

7. State Bloch theorem. What is the outcome of the theory?

OR

8. What is forbidden energy gap?

```
UNIT-V
```

9. Explain Cooper pair and coherence length.

OR

10. Describe the isotope effect in superconductors.

(SECTION : C-DESCRIPTIVE)

(Marks: 50)

Answer the following questions :

UNIT—I

 Discuss the lattice vibration of one-dimensional linear monatomic chain. Show that the state of vibration of the lattice corresponding to the wave vectors k and k ² m are the same (where m is an integer and a is the nearest neighbour distance). Also show that at the boundary of first Brillouin zone, the alternate atoms are in the opposite phase and form a standing wave. 5+2+3=10

4

10×5=50

Discuss the lattice vibrations of a lattice with two atoms per primitive cell.
 What are the optical and acoustical branch? Find the values of angular frequencies at the first Brillouin zone boundary.

Unit—II

3. Discuss the saturation phenomenon in paramagnets quantum mechanically under strong magnetic field and low temperature conditions. 10

OR

4. Explain classical Langevin theory of diamagnetism and derive the expression for its susceptibility. 10

UNIT—III

- (a) What are the various components of the local electric field at an atom in a crystal? Obtain the Lorentz relation for the local electric field. When is this relation valid?
 2+5+1=8
 - (b) What do you mean by dielectric polarisation?

OR

6. (*a*) Define electronic polarisability. Show that electronic polarisability is given by

$$\frac{0(r-1)}{N}$$

е

where N is the number density of the dielectric. 2+4=6

(b) Obtain the Clausius-Mosotti relation.

UNIT-IV

7. Solve the Schrödinger equation for motion of electrons through periodic potential (Kronig-Penney potential). Discuss the results for (a) small barrier strength (P 0) and (b) extremely large barrier strength (P).
10

5

/415

2

4

OR

- 8. (a) How does the band theory of solid lead to the classification of solids into conductors, semiconductors and insulators?
 - (b) Explain the concept of effective mass of an electron. Explain how effective mass of electron varies with the wave vector. 2+4=6

UNIT-V

9. Derive London equations and discuss how it helps in explaining the superconducting state. Obtain an expression for London penetration depth.
 5+1+4=10

OR

10. Define superconductivity. Explain the types of superconductor. What are the critical temperature, critical magnetic field, Meissner effect? 1+3+6=10

 $\star \star \star$