MATH/VI/CC/12b

Student's Copy

2023

(CBCS) (6th Semester)

MATHEMATICS

TWELFTH (B) PAPER

(Elementary Number Theory)

Full Marks : 75 Time : 3 hours The figures in the margin indicate full marks for the questions

(SECTION : A—OBJECTIVE)

(Marks: 10)

Tick (\checkmark) the correct answer in the brackets provided :

 $1 \times 10 = 10$

- 1. The greatest common divisor of 1980 and 1617 is
 - (a) 33 ()
 - (b) 1 ()
 - *(c)* 17 *()*
 - (d) 11 ()

2. The least common multiple of 2864 and 624 is

- *(a)* 135231 ()
- *(b)* 6240 ()
- *(c)* 111696 ()
- *(d)* 2864 ()

/410

3. A solution of the linear congruence $13x = 5 \pmod{9}$ is

- (a) 5 ()
- *(b)* 6 ()
- (c) 7 ()
- (d) 8 ()

4. Which of the following is reduced residue system modulo 8?

- (a) $\{1, 3, 5\}$ ()
- (b) $\{1, 2, 6\}$ ()
- (c) $\{1, 7\}$ ()
- (d) $\{1, 3, 5, 7\}$ ()

5. The remainder when 3^{24} is divided by 5 is

6. If p is a positive prime and n is any positive integer, then

(1) (p) (p^2) \cdots \cdots (p^{n-1}) (p^n) is equal to

- (a) p^{n} ()
- (b) p^{n-1} ()

(c) 1 ()

(d) 0 ()

/410

7. Let p 17, a 3. Then the value of $\frac{a}{p}$ is

- (a) 1 ()
- (b) -1 ()
- (c) 0 ()
- (d) 2 ()

8. If p denotes an odd prime, then the Legendre symbol $\frac{a}{p}$ is defined to be 1 if

- $(a) \quad p|a \qquad (\qquad)$
- (b) a is a quadratic non-residue ()
- (c) a is a quadratic residue ()
- (d) None of the above ()

9. The exponent of 7 in 1000! is

- (a) 100 ()
- *(b)* 7 ()
- *(c)* 164 ()
- (d) 165 ()

10. If n = 71, then the value of (n) is

(a) 71 ()
(b) 72 ()
(c) 73 ()
(d) 74 ()

(Marks: 15)

Answer the following :

 $3 \times 5 = 15$

UNIT—I

1. If a|b and b|c, prove that a|c.

OR

2. If $p, q_1, q_2, q_3, \dots, q_n$ are all primes and $p|q_1q_2q_3 \dots q_n$, prove that $p \quad q_k$ for some k, where $1 \quad k \quad n$.

Unit—II

3. Prove that the number of primes is infinite.

OR

4. If a $b \pmod{m_1}$, a $b \pmod{m_2}$ and m is the least common multiple of m_1 and m_2 , prove that a $b \pmod{m}$.

UNIT-III

5. If p is a positive prime and n is any positive integer, find the value of the series (1) (p) $(p^2) \cdots (p^{n-1}) (p^n)$

OR

6. If gcd(a, m) 1 and a is of order (n) modulo n, prove that a is a primitive root of n.

UNIT-IV

7. Let p be an odd prime. Prove that

$$\frac{a}{p} \quad \frac{b}{p} \quad \frac{ab}{p}$$

OR

8. Find all odd primes p such that $x^2 = 13 \pmod{p}$ has a solution.

/410

UNIT-V

9. Let x be any real number. Prove that $\frac{[x]}{m} = \frac{x}{m}$.

OR

10. Prove that $\frac{(n)}{n} = \frac{(d)}{d}$.

(SECTION : C—DESCRIPTIVE)

(*Marks* : 50)

Answer the following :

Unit—I

- **1.** (a) If g is the greatest common divisor of b and c, prove that there exists integers x_0 and y_0 such that $g(b, c) bx_0 cy_0$. 5
 - (b) Find the number of distinct positive integral divisors and their sum for the integer 4800.

OR

- 2. (a) If a|c, b|c and (a, b) 1, show that ab|c. Also show that the conclusion is false when (a, b) 1.
 (b) Using the Euclidean algorithm obtain integers x and y satisfying the
 - condition that gcd(42823, 6409) 42823x 6409y.

- **3.** (a) If a and b are two integers, prove that a $b \pmod{m}$ if and only if a and b have the same remainder when divided by m.
 - (b) Solve the congruence

 $235x 54 \pmod{7}$

OR

4. (a) Let m be a fixed positive integer and S {0, 1, 2, 3, ..., m 1}. Prove that no two integers of S are congruent modulo m to each other and every x Z is congruent modulo to one of the integers of S.

5

(b) If $a \ b \pmod{m}$, prove that $a \ x \ b \ x \pmod{m}$ and $ax \ bx \pmod{m}$ for all $x \ Z$.

/410

10×5=50

5

5

5

5

UNIT—III

5.	(a)	Prove that 28! 233 0(mod 899) using Wilson's theorem.	4				
	(b)	Verify that 2 is a primitive root of 19, but not of 17.	3				
	(c)	If <i>p</i> is a positive prime and <i>a</i> is any integer, prove that $a^p = a \pmod{p}$.	3				
	OR						
6.	(a)	State and prove Euler's theorem.	+5=6				

(b) If n = 1, prove that the sum of all positive integers which are less than nand prime to n is $\frac{1}{2}n$ (n). 4

7. (a) If Q is odd and Q = 0, prove that

$$\frac{1}{Q}$$
 (1) $\frac{Q^{(2)}}{2}$ and $\frac{2}{Q}$ (1) $\frac{Q^{(2)}}{8}$ 5

(b) Using Chinese remainder theorem, find the least positive integer x which satisfies

х	2(mod 3)	
х	4(mod 5)	
х	5(mod 7)	5

OR

8. (a) Let p be a prime and integer n 0. Let f(x) a_nxⁿ a_{n 1}x^{n 1} ··· a₀ be a polynomial of degree n modulo p. Prove that the congruence f(x) 0(mod p) has at most n mutually incongruent solutions modulo p. 5

(b) Find the solutions of polynomial congruence

$$f(x) \quad x^2 \quad 7x \quad 2 \quad 0 \pmod{5^3}$$
 5

/410

UNIT-V

9.	(a)	State and prove Mobius inversion formula.	6
	(b)	Let x be any real number. Prove that $[x] [y] [x y] [x] [y] 1$.	4
		OR	
10.	(a)	If f is a multiplicative arithmetic function and F is denoted by	4
		$F(n) = \int_{d n} f(d)$, prove that F is also multiplicative.	4
	(b)	Find the three different Pythagorean triples not necessarily primitive of	
		the form 16, <i>y</i> , <i>z</i> .	3
	(c)	Find the general solution of $10x 8y 42$.	3

 $\star\star\star$