MATH/VI/CC/10

Student's Copy

2023

(CBCS)

(6th Semester)

MATHEMATICS

TENTH PAPER

(Advanced Calculus)

Full Marks : 75 Time : 3 hours

The figures in the margin indicate full marks for the questions

(SECTION: A-OBJECTIVE)

(Marks: 10)

Put a Tick \square mark against the correct answer in the boxes provided : $1 \times 10=10$

- **1.** If f is integrable on [a, b], then |f| is integrable and
 - (a) $\begin{vmatrix} b \\ a \\ f \\ dx \end{vmatrix} \begin{vmatrix} b \\ a \\ f \\ dx \end{vmatrix} \begin{vmatrix} b \\ a \\ f \\ dx \end{vmatrix} \square$ (b) $\begin{vmatrix} b \\ a \\ f \\ dx \end{vmatrix} \begin{vmatrix} b \\ a \\ a \\ f \\ dx \end{vmatrix} \square$ (c) $\begin{vmatrix} b \\ a \\ f \\ dx \end{vmatrix} and \begin{vmatrix} b \\ a \\ a \\ f \\ dx are always equal$ (d) None of the above \square

/408

2. For a bounded and integrable function f, if b = a, then

(a)
$$m(b \ a)$$
 $a f dx$ $M(b \ a)$ \Box (b) $m(b \ a)$ $a f dx$ $M(b \ a)$ \Box (c) $m(b \ a)$ $a f dx$ $M(b \ a)$ \Box (d) $m(b \ a)$ $a f dx$ $M(b \ a)$ \Box

3. The improper integral $\int_{0}^{1} \frac{1}{x^n} dx$ is convergent if and only if

- $(a) n 1 \qquad (b) n 1 \qquad (b)$
- (c) $n \ 1 \ \Box$ (d) None of the above \Box

4. If f and g are two positive functions on [a, b] such that

$$\lim_{x \to a} \frac{f'(x)}{g(x)} \quad l$$

where l is a non-zero finite number, then

(a) a f dx converges if a g dx converges \Box (b) b g dx converges if b f dx diverges \Box (c) b f dx converges if b g dx diverges \Box (d) b g dx converges but does not need to imply b f dx converges \Box

/408

- **5.** Suppose f is continuous function of two variables with domain as rectangle $[a, b; c, d] \mathbb{R}^2$. Then the function $(y) = \int_a^b f(x, y) dx$ for a fixed value of y = [c, d] is
 - (a) discontinuous in [c, d]
 - (b) derivable even though f_y does not exist and continuous
 - (c) continuous in [c, d]
 - (d) None of the above \Box
- 6. The value of the integral $\int_{0}^{0} \frac{\tan^{-1} ax}{x(1-x)^2} dx$, if a = 0, is
 - (a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c)
 - (c) $\frac{1}{2(1-a)}$ \Box (d) $\frac{1}{2}\log(1-a)$ \Box

7. The value of the integral x^2y^3dxdy over the circle C, x^2 y^2 1 is C

(a) $\frac{1}{6}$ \Box (b) 0 \Box (c) $\frac{1}{6}$ \Box (d) $\log 2$ \Box

8. The integral $xy \, dx$ along the arc of a parabola $x = y^2$ from (1, 1) to (1, 1) is C

 (a) 3
 \Box (b) $\frac{2}{3}$ \Box

 (c) 2
 \Box (d) $\frac{4}{5}$ \Box

/408

9. The sequence of function $\{f_n\}$, where $f_n(x) = x^n$ is

(a) neither pointwise nor uniformly continuous for x [0, 1] \Box

(b) pointwise continuous for x [0, 1]

(c) uniformly continuous for x [0, 1]

(d) None of the above \Box

10. The series $n = \frac{1}{n^p}$ is uniformly continuous if (a) p = 1 \square (b) p = 1 \square (c) p = 1 \square (d) p = 1 \square

(SECTION : B-SHORT ANSWER)

(*Marks* : 15)

Answer the following questions :

Unit—I

1. Show that if P is a refinement of P, then for a bounded function f, U(P, f) = U(P, f).

OR

Compute U(P, f) and L(P, f) for the function f(x) = x, 0 = x - 1 on taking the partition

$$P = 0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1 \text{ of } [0,1]$$

4

/408

[Contd.

3×5=15

2. Show that

$$\frac{1}{0}\frac{dx}{x^2}$$

is not convergent.

OR

Examine the convergence of the improper integral

$$\int_{0}^{1} \frac{x^2}{\sqrt{x^5 - 1}} \, dx$$

3. Evaluate
$$\int_{0} \frac{\cos(ax) - \cos(bx)}{x} dx$$

OR

Examine the uniform convergence of the improper integral

$$\int_{1}^{1} \frac{\cos x}{\sqrt{1 - x^2}} dx \text{ in } (,)$$

UNIT—IV

4. Evaluate using Green's theorem $_C(xdx x^2y^2dy)$, where C is the triangle with vertices (0, 0), (0, 1) and (1, 1) oriented positively.

OR

Evaluate $C(x^2 y^2)dx$, where C is the arc of the parabola y^2 4ax between (0, 0) to (a, 2a).

5

/408

UNIT-V

5. Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{x}{1 nx^2}$, $x \in \mathbb{R}$, converges uniformly on any closed interval.

OR

What do you mean by the pointwise convergence and the uniform convergence of a sequence of real-valued functions?

(SECTION : C—DESCRIPTIVE)

(Marks: 50)

Answer the following questions :

Unit—I

- (a) Prove that if f and g are two bounded and integrable functions on [a, b], then their product fg is also bounded and integrable on [a, b].
 - (b) Prove that if a function f is monotonic on [a, b], then it is integrable on [a, b].

OR

2. (a) Prove that if f is monotonic and f, f and g are all continuous in [a, b], then there exists t [a, b] such that

$$\int_{a}^{b} f(x)g(x)dx \quad f(a) \quad \int_{a}^{t} g(x)dx \quad f(b) \quad \int_{b}^{b} g(x)dx \quad 5$$

(b) Show that x^2 is integrable on any interval [0, k].

/408

[Contd.

5

 $10 \times 5 = 50$

- (a) Prove that every absolute convergent integral in [a, b] is convergent in [a, b].
 - (b) Examine the convergence of

$$\int_{0}^{1} \frac{dx}{x^{3/2} (1-x)^{1/2}}$$
 5

4. (a) If f and g are two positive functions on [a, b] such that

$$\lim_{x \to a} \frac{f(x)}{g(x)} \quad l$$

OR

where *l* is non-zero finite number, then show that the two integrals $\int_{a}^{b} f(x)dx$ and $\int_{a}^{b} g(x)dx$ converge and diverge together at *a*. 5

(b) Evaluate :
$$2\frac{1}{2} + 2\frac{1}{2} = 5$$

(i) $\frac{2}{1} \frac{xdx}{\sqrt{x-1}}$
(ii) $\frac{dx}{\sqrt{1-x^3}}$

UNIT—III

5. (a) Let f(x, y) be a continuous function in R[a, b; c, d]. Then show that (y) $\int_{a}^{b} f(x, y) dx$ is continuous in [c, d]. 5

(b) If |a| = 1, then show that

$$_{0} \frac{\log\left(1 - a\cos x\right)}{\cos x} dx \quad \sin^{-1} a \qquad 5$$

/408

OR

6. (a) If f is a continuous function when $c \ y \ d, x \ a$; and the integral (y) $_{a} f(x, y)dx$ is uniformly convergent, then show that can be integrated under the integral sign, i.e.,

(b) Show that

$$\int_{0}^{\infty} \frac{\cos yx}{1-x^2} dx \quad \frac{1}{2} e^{-y} \qquad 5$$

UNIT—IV

- **7.** (a) Find the value of $_{C}(x \ y^{2}) dx \ (x^{2} \ y) dy$ taken along the clockwise sense along the closed curve formed by $y^{2} \ x$ and $y \ x$. 5
 - (b) Evaluate $_R f(x, y) dx dy$ over a rectangle R [0, 1; 0, 1], where

$$\begin{array}{cccccc} f(x,y) & x & y & ; & \text{if } x^2 & y & 2x^2 \\ & 0 & ; & \text{elsewhere} \end{array} 5$$

OR

8. (a) Change the order of integration and evaluate

$$\begin{array}{ccc} & 0 & \frac{e^{-y}}{y} dx dy \\ & 5 \end{array}$$

(b) Verify Green's theorem for $_C x^2 y \, dx \, xy^2 \, dy$, where C is taken along the first quadrant from the closed path bounded by $y \, x$ and $x^2 \, y^3$. 5

/408

9. Prove that the necessary and sufficient condition for uniform convergence of a sequence of the function $\{f_n(x)\}$ on a domain [a, b] is that for every 0 there exists a ve integer n such that

$$|f_{n p}(x) f_{n}(x)|$$
, $n m, x [a, b]$ and $p, m \mathbb{N}$
OR 10

10. (a) Apply Cauchy criterion of convergence to show that the sequence of functions $\{f_n(x)\}$ converges uniformly on [0, 1], where

$$f_n(x) \quad \frac{n \quad p}{x \quad n \quad p} \tag{5}$$

(b) Consider an infinite series of the form $n = \frac{x}{n(n-1)}$. Determine whether it is pointwise and also uniformly convergent for x = [0, k]. 5

* * *