MATH/VI/CC/09

Student's Copy

2023

(CBCS)

(6th Semester)

MATHEMATICS

NINTH PAPER

(Modern Algebra)

Full Marks: 75

Time : 3 hours

(SECTION : A—OBJECTIVE)

(*Marks* : 10)

Each question carries 1 mark

Put a Tick \square mark against the correct answer in the box provided :

- **1.** If a and b be two elements of a group G, then b is conjugate to a if
 - (a) b a ^{1}xa ; x G \Box (b) b axa 1 ; x G \Box (c) b x ^{1}ax ; x G \Box (d) b xa ^{1}x ; x G \Box

/407

- **2.** If G is a group and a is a fixed element of G, then the mapping $f_a : G$ G is an inner automorphism if
 - (a) $f_a(x) = a^{-1}xa + x + G = a^{-1}$ (b) $f_a(x) = ax^{-1}a + x + G = a^{-1}$ (c) $f_a(x) = x^{-1}ax + x + G = a^{-1}$ (d) $f_a(x) = xax^{-1} + x + G = a^{-1}$
- **3.** The necessary and sufficient conditions for a non-empty subset *K* of a field *F* to be a subfield of *F* are
- (a) a b K and ab K for all a, b K □
 (b) a b K and ab ¹ K for all a, b K, b 0 □
 (c) a b K and ab K for all a, b K □
 (d) a b K and ab ¹ K for all a, b K, b 0 □ **4.** The characteristic of the ring (I₆, 6, 6), where I₆ {0, 1, 2, 3, 4, 5} is
- (a) 3
 (b) 5

 (c) 0
 (d) 6
- **5.** The associates of a non-zero element a *ib* of the ring of Gaussian integers $D \{a \ ib, a, b \ I\}$ are
 - (a) a ib, a ib, b ia, b ia
 (b) a ib, a ib, a ib, a ib, a ib
 (c) a ib, a ib, b ia, b ia
 (d) a ib, a ib, b ia, b ia
- **6.** The necessary and sufficient condition for a non-zero element a in the Euclidean ring R to be a unit is that
 - (a) $d(a) \quad d(1)$ \Box (b) $d(a) \quad d(1)$ \Box
 - (c) $d(a) \quad d(1)$ \Box (d) $d(a) \quad d(1)$ \Box

/407

7. Which of the following sets of vectors is linearly dependent?

- (a) $\{(1,2,0), (0,3,1), (1,0,1)\}$ \Box (b) $\{(1,2,1), (3,0, 1), (5,4,3)\}$ \Box (c) $\{(2,1,4), (1, 1,2), (3,1, 2)\}$ \Box (d) $\{(2, 3,1), (3, 1,5), (1, 4,3)\}$ \Box
- **8.** If W be a subspace of a finite dimensional vector space V(F), then
 - (a) $\dim V / W \quad \dim V \quad \dim W$
 - (b) $\dim V / W \quad \dim V \quad \dim W \quad \Box$
 - (c) $\dim V / W \quad \dim W \quad \dim V$
 - (d) $\dim V / W \quad \dim V \quad \dim W \quad \Box$
- **9.** Let V be a vector space over the field F. A function T satisfying $T(a \ b) \ aT() \ bT()$

for all , V and for all a, b F is called a linear functional if

- (a) T is a function from V into V \Box
- (b) T is a function from F into F \Box
- (c) T is a function from V into F
- (d) T is a function from F into V \Box
- **10.** Let V and U be vector spaces over F of dimensions m and n respectively. If T: U = V is a linear map of rank r, then the dimension of kernel of T is
 - (a) r m 🗌
 - (b) m r 🗌
 - (c) n r 🗌
 - (d) r n 🗆

(SECTION : B-SHORT ANSWER)

(Marks: 15)

Each question carries 3 marks

Answer the following questions :

Unit—I

1. Prove that the intersection of any two normal subgroups of a group is a normal subgroup.

OR

2. Show that every quotient group of an Abelian group is Abelian and the converse is not true.

Unit—II

3. Prove that a skew field has no divisors of zero.

OR

4. Show that every ideal of a ring R is a subring of R but the converse is not necessarily true.

UNIT-III

5. Let f be a homomorphism of a ring R into a ring R. Show that the kernel of f is an ideal of R.

OR

6. Show that every Euclidean ring possesses unity element.

UNIT—IV

7. Show that the set $W = \{(x, y, z) : x \exists y \exists z = 0\}$ is a subspace of \mathbb{R}^3 .

OR

8. If V(F) is a finite dimensional vector space of dimension n, then show that any set of n linearly independent vectors in V forms a basis of V.

/407

UNIT—V

9. Show that the function $T : R^2 = R^2$ defined by $T(x, y) = (x^2, y)$ is not a linear transformation.

OR

10. Let $T: R^3 = R^3$ be a linear transformation defined by

T(x, y, z) (3x z, 2x y, x 2y 4z)

Compute the matrix A of T with respect to the standard basis of R^3 .

(SECTION: C-DESCRIPTIVE)

(Marks: 50)

The figures in the margin indicate full marks for the questions

Answer five questions, taking one from each Unit

Unit—I

- (a) Prove that a subgroup H of a group G is a normal subgroup of G if and only if the product of two right cosets of H in G is again a right coset of H in G.
 - (b) Define centre of a group. Prove that the centre Z of a group G is a normal subgroup of G. 1+4=5
- **2.** (a) State the fundamental theorem on homomorphism of groups. Let H be any subgroup of a group G and if N is any normal subgroup of G, then prove that

$$\frac{HN}{N} \quad \frac{H}{H \quad N} \qquad 1+6=7$$

(b) Show that for an Abelian group, the only inner automorphism is the identity mapping whereas for non-Abelian groups, there exists non-trivial automorphisms.

3

5

/407

Unit—II

3.	(a)	Prove that a ring R is without zero divisors if and only if the cancellation laws hold in R .	4
	(b)	Prove that a finite commutative ring without zero divisors is a field.	6
4.	(a) (b)	Prove that an ideal S of a commutative ring R with unity is maximal if	3 7
		UNIT—III	1
5.	(a)	Let D be an integral domain with unity element 1. Show that two	5
	(b)	Define Euclidean ring. Show that every field is a Euclidean ring. 1+4=	5
6.	(a)	Let R be a Euclidean ring and a , b be two non-zero elements in R , then prove that—	
		(i) if b is a unit in R, $d(ab) = d(a)$	
		(ii) if b is not a unit in R, $d(ab) d(a)$ 2+4=	6
	(b)	If <i>a</i> is a prime element of a unique factorization domain <i>R</i> and <i>b</i> , <i>c</i> are any elements of <i>R</i> , then prove that $a bc a b$ or $a c$.	4
		UNIT—IV	
7.	(a)	Define linearly dependent set of vectors. Show that if two vectors are linearly dependent, one of them is a scalar multiple of the other. 1+3=	:4
	(b)	Prove that every linearly independent subset of a finitely generated vector space $V(F)$ is either a basis of V or can be extended to form a	6
8.	(a)	If U and W are two subspaces of a finite dimensional vector space $V(F)$, then prove that dim $(U \ W)$ dim U dim W dim $(U \ W)$.	7
	(b)	Show that the kernel of a homomorphism of a vector space is a subspace.	3
/407	,	6 [Cont	d.
,			

UNIT-V

- **9.** (a) Let U be an n-dimensional vector space over the field F and let V be an m-dimensional vector space over F. Then prove that the vector space L(U, V) of linear transformations from U into V is also finite dimensional and is of dimension mn.
 - (b) Let $T: R^3 = R^3$ be a linear transformation defined by

$$T(x, y, z) \quad (x \quad 2y \quad z, y \quad z, x \quad y \quad 2z)$$

Find the range space, null space, rank of T and nullity of T.

- **10.** (a) Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. If V is finite dimensional, then prove that rankT nullityT dimV.
 - (b) Find the matrix representation of the linear map $T: \mathbb{R}^3 = \mathbb{R}^3$ given by

$$T(x, y, z) \quad (z, y \quad z, x \quad y \quad z)$$

relative to the basis $\{(1, 0, 1), (1, 2, 1), (2, 1, 1)\}$.

* * *

/407

4

6

4

6